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6. Fisher F -distribution, F (m,n). This is defined as that of the ratio

F :=
U/m

V/n
,

where U ∼ χ2(m), V ∼ χ2(n) and U, V are independent. This has density
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(m,n > 0, x > 0).

See e.g. [BF], 3.3, and for its uses in, e.g., hypothesis testing, [BF] Ch. 6.
7. Gamma distributions, Γ(α). These are defined, for α > 0, as having
density

f(x) := xα−1e−x/Γ(a) (x > 0).

They are the ‘default option’ for modelling non-negative errors – just as
the Normal is the ‘default option’ for modelling errors with either sign (in
Generalized Linear Models (GLMs); see e.g. [BF], Ch. 8.
8. Beta distributions B(β, α). These are defined, for α, β > 0, as having
density

f(x) :=
xα−1(1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1.

They are often used for modelling proportions.
Finally, we mention some standard discrete distributions.

9. Bernoulli B(p). This models a biased coin, that falls heads (or success, 1)
with probability p ∈ (0, 1), tails (or failure, or 0) with probability qx := 1−p
(a ”p-coin”):

f(x) = px(1− p)1−x, x = 0, 1.

This has mean p and variance pq.
10. Binomial B(n, p), p ∈ (0, 1), n = 1, 2, . . .. This models the number of
times a p-coin falls heads in n independent tosses:

f(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n.

It has mean np and variance npq.
11. Poisson P (λ), λ > 0. Here

f(x) = e−λλx/x!, x = 0, 1, 2, . . .
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This has mean λ and variance λ. It models counts, of such things as acci-
dents, insurance claims, earthquakes etc. We shall meet it later in connection
with the Poisson process.

2. Convolutions
In the density case,

P (X ∈ A) =
∫
A
f(x)dx.

Here we may be in any number of dimensions n: if n > 1, X is a random
vector, x is a vector,

∫
is an n-fold integral, and its element of integration dx

is also n-dimensional.
Recall the definition of independence: events A1, . . . , An are independent

if the probability of the intersection of any subset of them is the product of
their separate probabilities. Random variables X1, . . . , Xn are independent
iff the events X1 ≤ x1, . . . , Xn ≤ xn are independent, for all x1, . . . , xn. So
independence holds iff

P (X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

P (Xi ≤ xi),

i.e.

F (x1, . . . , xn) =
n∏
1

Fi(xi),

in which case the copula is

C(u1, . . . , un) ≡ u1u2 . . . un (ui ∈ [0, 1]).

That is, independence holds iff the joint distribution factorizes into the prod-
uct of the marginals.

In the density case: the LHS above is

F (x1, . . . , xn) =
∫ x1

−∞
. . .
∫ xn

−∞
f(u1, . . . , un)du1 . . . dun,

and similarly for the RHS. As the two integrals are equal, the two integrands
are equal a.e., giving: independence holds iff

f(x1, . . . , xn) =
n∏
1

fi(xi), a.e. :
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the joint density factorises into the product of the marginal densities.
When n = 2, we write the random vector as (X,Y ), and write f , g for

the densities of X, Y . In the independent case, the joint density of (X, Y ) is
thus f(x)g(y).

In the density case, one evaluates probabilities by integrating the rele-
vant density over the relevant region. So if Z := X + Y has density h and
distribution function H,

H(z) := P (Z ≤ z) = P (X + Y ≤ z) =
∫ z

−∞
h(u)du

=
∫ ∫

{(x,y):x+y≤z}
f(x)g(y)dxdy

=
∫ ∞

−∞
f(x)dx

∫ z−x

−∞
g(y)dy.

(Here in the last integral we have the usual choices of notation in calculus
of several variables:

∫
f(x)dx

∫
... as here,

∫
f(x)[

∫
...]dx, or – arguably the

most logical –
∫
dxf(x)

∫
dy.... We shall use whatever seems most convenient

– the meaning is clear.)
We now want to extract the density h. At least a.e. in z, we can get this

by differentiating H. As the z-dependence on the RHS is under the integral
sign, we want to differentiate under the integral sign on the right. This can
be justified (in this case, because g ≥ 0, so the inner integral is increasing in
z). We obtain

h(z) =
∫ ∞

−∞
f(x)g(z − x)dx.

Changing variables and using symmetry:

h(x) =
∫ ∞

−∞
f(y)g(x− y)dy =

∫ ∞

−∞
g(y)f(x− y)dy.

We call this the convolution h of f and g, and write

h = f ∗ g (= g ∗ f).

Note. 1. When X, Y ≥ 0, f, vanish on (−∞, 0), and the above reduces to

(f ∗ g)(x) =
∫ x

0
f(y)g(x− y)dy.

2. The distribution-function version of convolution is

H(x) =
∫
F (x− y)dG(y) (=

∫
G((x− y)dF (y)).
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3. Think of convolution as a smoothing process (it involves an integration,
and integration is a smoothing process). We quote: we do not need both X
and Y to have a density for X + Y to have a density – it is enough if one of
them does.
4. In Statistics, we are constantly averaging, over the n readings in our
sample; n may be large – the larger, the better. Averaging entails two steps:
adding over the readings, and dividing by the number of readings. The
second is trivial, so this reduces effectively to the first. If (as is usual) the
readings are independent, this means we are forming an n-fold convolution.
This involves n−1 integrations. This becomes impossibly unwieldy for large
n! So, we need an alternative – to which we turn in II.3c below.
Example: Gamma distributions and the Beta integral. If X ∼ Γ(α), Y ∼
Γ(β) and X,Y are independent, we have

f(x) = e−xxα−1/Γ(α), g(y) = e−yyβ−1/Γ(β), x, y > 0.

So

(f ∗ g)(x) =
1

Γ(α)Γ(β)

∫ x

0
e−ye−(x−y)yα−1(x− y)β−1dy

=
1

Γ(α)Γ(β)
e−x

∫ x

0
yα−1(x− y)β−1dy.

Put y := xu

h(x) =
1

Γ(α)Γ(β)
e−xxα+β−1

∫ 1

0
uα−1(1− u)β−1du.

We know that h is a density (of X + Y ). But on the RHS, we have the
functional form of a density – the Gamma density Γ(α+ β). As always with
densities, it suffices to work modulo a multiplicative constant: if we get the
variable part right, we can always pick up the constant at the end – it is the
value needed to make the density integrate to 1. So the constant on the RHS
– Γ(α)Γ(β)

∫ 1
0 uα−1(1−u)β−1du – is in fact Γ(α+β). Recalling the definition

of the Beta integral, this proves

B(α, β) :=
∫ 1

0
uα−1(1− u)β−1du =

Γ(α)Γ(β)

Γ(α+ β)

– Euler’s integral for the Beta function, of II.1 above! Note how remarkable
this is: we have obtained a purely analytic result by a purely probabilistic
argument.
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