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Lecture 6. 18.10.2012 (half-hour: Problems)

The next obvious example is the Normal: ifX ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2),

and X, Y are independent, then X+Y ∼ N(µ1+µ2, σ
2
1+σ2

2). This is indeed
true, and can be proved as above (try it as an exercise!). We do not do so,
because the best way to do this is by another route, to which we now turn.
3. MGFs, CFs and PGFs
Moments. For a random variable X, we define its nth moment by

µn, or µn,X , := E[Xn].

This need not exist! But, in Statistics, usually all moments exist, for n =
1, 2, . . .. (Check which moments exist for the 11 examples in II.1 above.)
Generating functions. Given a function f with Maclaurin expansion

f(x) =
∞∑
n=0

f (n)(0)xn/n! =
∞∑
n=0

anx
n,

say, the function f on the LHS is called the generating function (GF) of the
sequence a := (an)

∞
n=0 on the RHS.

The mathematics of such power-series expansions can only be properly
understood in the framework of Complex Analysis (for which refer to your
undergraduate notes, the textbook of your choice, or the M2P3 link on my
website). But, you first encountered this in the context of Real Analysis
when learning Calculus.

Think of the function f as an efficient way of encoding the infinitely many
numbers an.
Example: the Bernoulli numbers. The Bernoulli numbers Bn are defined
by the power-series expansion (see e.g. my website, M3PM16/M4PM16,
Problems 5 Q4)

x

ex − 1
=

∞∑
n=0

Bnt
n/n!

(or can alternatively be defined via the function x cot x). One has

B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42,

and all higher odd Bn = 0. These are important in Analytic Number Theory.
MGFs.
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Definition. For a random variable X all of whose moments µn := E[Xn]
exist, the moment-generating function (MGF) of X is, for t real,

M(t), or µn,X(t), := E[etX ].

We now substitute
∑∞

n=0 t
nXn/n! for etX . If we can interchange E[.] and∑∞

n=0, we obtain

M(t) =
∞∑
n=0

E[Xn]tn/n!

Thus the MGF on the left is the GF of the moment sequence on the right,
hence the name. Recall the radius of convergence R of a power series. There
are three cases:
(i) R = 0. In this case the power series converges only at the origin. It is
thus useless. This case can arise – it is possible for all moments to exist but
the MGF to have R = 0 – but this case does not arise in practice and we
exclude it in what follows.
(ii) 0 < R < ∞. In this case the MGF can be used for some but not all
t. In the language of Complex Analysis, M(t) is analytic in |t| < R (for t
complex), but there will typically be a singularity on |t| = R.
(iii) R = ∞. In this case M(t) is entire (= integral – analytic in the whole
complex t-plane).
MGFs and convolution. Recall the Multiplication Theorem: if X,Y are
random variables with means (i.e., E[|X|] < ∞, E[|Y |] < ∞), then if X, Y
are independent,

E[XY ] = E[X].E[Y ].

Now if X, Y are independent with MGFs, X + Y has MGF

MX+Y (t) := E[et(X+Y )]

= E[etX .etY ] (property of exponentials)

= E[etX ].E[etY ] (etX , etY are independent as X, Y are + Multiplication Th.)

= MX(t).MY (t) :

the MGF of an independent sum is the product of the MGFs.
Examples.
1. χ2(n). If X1, X2, . . . are iid N(0, 1), χ2(n) is the distribution of X1+ . . .+
X2

n. So by above its MGF is the nth power of the MGF of χ2(1). This (see

Problems, or [BF] Th. 2.1) is 1/(1 − 2t)
1
2 for t < 1

2
. So χ2(n) has MGF

1/(1− 2t)
1
2
n. Thus in this case we have R = 1

2
.

2


