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Lecture 8. 25.10.2012 (half-hour: Problems)
We form the probability generating function (PGF)

P (s), or PX(s), := E[sX ] =
∞∑
n=0

snP (X = n) =
∞∑
n=0

pns
n.

This is a power series in s, and since
∑

pn = 1, it converges for s = 1. So the
radius of convergence R is at least 1.

If R > 1, P (s) is analytic (= holomorphic) at s = 1, so we may differen-
tiate termwise:

P ′(s) =
∞∑
n=1

nsn−1pn; P ′′(s) =
∞∑
n=2

n(n− 1)sn−2pn.

Taking s = 1:

P ′(1) =
∑

npn =
∑

nP (X = n) = E[X];

P ′′(1) =
∑

n(n− 1)pn =
∑

n(n− 1)P (X = n) = E[X(X − 1)],

etc. (the right-hand sides are called the factorial moments of X; they deter-
mine the moments, and vice versa). Thus

E[X] = P ′(1)];

var(X) = E[X2]− (E[X])2

= E[X(X − 1)] + E[X]− (E[X])2

= P ′′(1) + P ′(1)− [P ′(1)]2.

This gives the mean and variance in terms of the first two derivatives of
the PGF, in the case R = 1. We quote that these formulae still hold even if
R = 1. This depends on Abel’s Continuity Theorem from Analysis; we omit
this.
Convolution.

Just as with MGFs and CFs: the PGF of an independent sum is the
product of the PGFs.
Random sums.

If we have a random sum – a sum X1 + . . .+XN of a random number N
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of iid random variables Xi, where the Xi have PGF P (s) and N is indepen-
dent of the Xi with PGF Q(s) – then X1 + . . .+XN has PGF Q(P (s)), the
functional composition of P and Q. This result is very useful in the study
of branching processes, which model the growth of biological populations (or
chain reactions in Physics, Chemistry etc.); see Problems 10 Q3.

III. CONVERGENCE and LIMIT THEOREMS
1. Modes of convergence.

In Analysis, we deal with convergence and limits all the time, but in
Probability Theory we have to modify our requirements.
Example: Coin tossing. Consider repeated (independent) tosses of a fair
coin (outcomes iid Bernoulli B(1

2
)). What can we say about the long-run

behaviour of the observed frequency to heads to date? The man/woman in
the street will say, ”tends to a half – Law of Averages”. There is much good
sense in this, and we will prove a theorem that says just this, but subject to
a qualification, that turns out to be inevitable.

The coin can fall tails (frequency of heads 0; pr 1
2
). So it can fall tails 10

times (frequency of heads 0; pr 2−10); 100 times (frequency 0; pr 2−100), etc.
Such highly exceptional behaviour is certainly very unusual (highly unlikely
– and we can say exactly how unlikely). In the limit, we would expect the
probability of this or any other aberrant behaviour to tend to 0, and it does.
The fact remains that the limit of 0 is 0, and not the 1
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occurring in the Law

of Averages.
Because of such examples, the best we can hope for is the following.

Definition. We say that random variables Xn, n = 1, 2, . . ., converge to X
almost surely (a.s.), or with probability 1 (wp1), if

P (Xn → X (n → ∞)) = 1,

and write
Xn → X a.s.

This is one of our two strong modes of convergence. For the other:
Definition. For p ≥ 1, Xn converges to X in pth mean, or in Lp, if

E[|Xn −X|p] → 0 (n → ∞)

(L for Lebesgue, p for pth power). The two most important cases for us are
p = 1 – convergence in mean, or in L1, and p = 2 – convergence in mean
square, or in L2.

2


