
PROBABILITY FOR STATISTICS: MOCK EXAM, 2012

Q1. Define the Chi-square distribution with n degrees of freedom, χ2(n).
Show that it has
(i) mean n, variance 2n;

(ii) characteristic function 1/(1− 2it)
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(iii) density
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Q2. Define the multivariate normal distribution. Find the characteristic
function of the multivariate normal distribution N(µ,Σ) in n dimensions
with mean vector µ and covariance matrix Σ.

Find the condition for independence of the linear forms Ax, Bx, with A,
B n× n matrices and x ∼ N(µ,Σ).

Q3. The Lévy density is defined by
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Show that f is a density, and that its Laplace-Stieltjes transform is

ψ(s) = e−
√
2s (s ≥ 0).

Q4. Show that
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defines a probability distribution on {0, 1, . . . d} (the hypergeometric distri-
bution, HG(d)).

In the Bernoulli-Laplace urn model, there are 2d balls, d black and d
white, and two urns, each containing d balls. At each stage, a ball is chosen
from each urn and they are interchanged; the state is the number i of white
balls in the first urn. Show that the transition matrix P = (pij) is given by

pi,i−1 = (i/d)2, pi,i = 2d(d−i)/d2, pi,i+1 = (d−i)2/d2, pi,j = 0 otherwise.

Show that the chain is reversible, and has invariant distribution HG(d).
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