pfsprob7.tex

PROBLEMS 7 22.11.2012

Q1 Properties of conditional expectation.

(i) For \mathcal{B} the trivial σ -field $\{\emptyset, \Omega\}$, show that $E[Y|\mathcal{B}] = E[Y]$. (Interpretation: a conditional expectation knowing nothing is the same as an unconditional expectation.)

(ii) For \mathcal{B} the whole σ -field \mathcal{A} , show that $E[Y|\mathcal{B}] = Y$. (Interpretation: given the whole σ -field \mathcal{A} , we know everything, so no randomness remains to average over, so taking the conditional expectation changes nothing.)

(iii) If Y is \mathcal{B} -measurable, show that $E[Y|\mathcal{B}] = Y$.

(iv) (Tower property). Show that if $\mathcal{C} \subset \mathcal{B}$, then $E[E[Y|\mathcal{B}] | \mathcal{C}] = E[Y|\mathcal{C}]$.

(iv') (Tower property'). Show that if $\mathcal{C} \subset \mathcal{B}$, then $E[E[Y|\mathcal{C}] | \mathcal{B}] = E[Y|\mathcal{C}]$.

Q2 Time-inversion for Brownian motion. For B Brownian motion, and X defined for $t \neq 0$ by

$$X_t := tB(1/t),$$

show that X is again Brownian motion (we say X is obtained from B by *time-inversion*).

Hence or otherwise show that

$$B(t)/t \to 0$$
 a.s. $(t \to \infty)$.

Q3. Brownian bridge X is defined for $t \in [0, 1]$ and B BM by

$$X_t := B_t - tB_1.$$

Show that X is Gaussian with mean 0 and covariance $\min(s, t) - st$.

Q4 (Hypergeometric distribution). Recall that $\binom{n}{k}$ is the number of subsets of size k of a st of size n, so

$$\sum_{k} \binom{n}{k} = 2^n$$

decomposes the total number 2^n of subsets of a set of size n by size k. Recall also that $\binom{n}{k}$ counts the number of (downward) paths from the vertex (the

'1' at the top) to the entry $\binom{n}{k}$ in Pascal's triangle. Show that

$$\sum_{k} \binom{n}{k}^2 = \binom{2n}{n},$$

(i) by decomposing the number of subsets of size n of a set of 2n balls, n white and n black, according to how many white balls they contain;

(ii) by equating coefficients of x^n in the identity $(1+x)^{2n} \equiv (1+x).(1+x)^n$; (iii) by counting routes from the vertex to the central entry $\binom{2n}{n}$ in row 2n, according to where they cross row n.

[We shall use Q3 in the study of the Bernoulli-Laplace distribution – see Problems 10 Q1.] NHB