
PROBABILITY FOR STATISTICS: EXAMINATION
SOLUTIONS 2013-14

Q1. (i) Area of an ellipse.
The proof given in lectures uses plane polar coordinates to find the area

of a circle, and then cartesian polar coordinates to reduce to this case by
dilation (or compression) of one axis [see pfsl1, on website]. The following
alternative proof uses only one coordinate system.

Let the ellipse E be x2/a2 + y2/b2 = 1. Parametrise the interior E◦ by
x = ar cos θ, y = br sin θ (θ ∈ [0, 2π], r ∈ [0, 1]). As

∂x/∂r = a cos θ = x/r, ∂y/∂r = b sin θ = y/r,

∂x/∂θ = −ar sin θ = −ay/b, ∂y/∂θ = br cos θ = bx/a

the Jacobian is

J = | x/r −ay/b
y/r bx/a

| = 1

r

( b
a
x2 +

a

b
y2
)
=
b2x2 + a2y2

abr
=
a2b2r2

abr
= abr.

So the area is

A =

∫ ∫
E◦
dxdy =

∫ ∫
E◦
Jdrdθ =

∫ 2π

0

dθ.

∫ 1

0

abrdr = 2π.
1

2
ab = πab.

[12]
(ii) Uniform distribution on subgraphs and densities.

We are given a density f and so its subgraph S := {(x, y) : 0 ≤ y ≤ f(x)}.
(a) ⇒ (b). Uniform distribution over S is w.r.t. the measure dxdy over S.
Integrating this over 0 ≤ y ≤ f(x) to project onto the first coordinate gives
the image measure f(x)dx, under which the first coordinate, X, has density
f : P (X ∈ [x, x+ dx]) = f(x)dx. [6]
(b) ⇒ (a). Conversely, as

dxdy = f(x)dx.dy/f(x),

if X has density f (as above), and Y |X = x is uniform on [0, f(x)], (X, Y )
is uniform on S. [7]
(i): seen; (ii): unseen (but should be familiar from simulation – this comes
into the rejection method).
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Q2 (Weak Law of Large Numbers, WLLN).
Random variables Xn converge in probability to X if

∀ ϵ > 0, P (|Xn −X| > ϵ) → 0 (n→ ∞). [2]

They converge to X in distribution if

Fn(x) := P (Xn ≤ x) → F (x) := P (X ≤ x) (n→ ∞),

at all continuity points x of F . [2]
(a) Convergence in probability implies convergence in distribution, but not
conversely in general. [1]
(b) The converse holds (so the two are equivalent) if the limit X is con-
stant. [1]

We need the following properties of the characteristic function (CF):
(i) (Lévy’s convergence theorem). Convergence in distribution of random
variables is equivalent to convergence of CFs (uniformly on compacta). [2]
(ii). The CF of an independent sum is the product of the CFs. [2]
(iii). If the random variable has k moments (finite), the CF can be expanded
as far as the tk term with negligible error term o(tk) for small t. [2]

Recall that (for x real and zn → z complex)

(1 +
x

n
)n → ex, (1 +

zn
n
)n → ez (n→ ∞). (∗) [2]

Theorem (Weak Law of Large Numbers, WLLN). [3]
If Xi are iid with mean µ,

1

n

n∑
1

Xk → µ (n→ ∞) in probability.

Proof. If the Xk have CF ϕ(t), then as the mean µ exists ϕ(t) = 1+ iµt+o(t)
as t→ 0, by (iii). So by (ii) (X1 + . . .+Xn)/n has CF

E exp{it(X1 + . . .+Xn)/n} = [ϕ(t/n)]n = [1 +
iµt

n
+ o(1/n)]n,

for fixed t and n → ∞. By (∗), the RHS has limit eiµt as n → ∞. But eiµt

is the CF of the constant µ. So by Lévy’s continuity theorem (i),

(X1 + . . .+Xn)/n→ µ (n→ ∞) in distribution.

Since the limit µ is constant, this and (b) give

(X1 + . . .+Xn)/n→ µ (n→ ∞) in probability. // [8]

Seen – lectures.
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Q3 (Compound Poisson processes).
(i) Let jumps {X1, · · · , Xn, · · ·} arrive at the epochs of a Poisson process with
rate λ [claims, in the insurance context used in lectures – call them claims
below, for definiteness]. Then the number N(t) of claims in the time-interval
[0, t] is Poisson P (λt). If the claims are iid with mean µ and CF ϕ(u), then
the claim total at time t is S(t) := X1 + · · ·XN(t), with CF

ψ(u) := E[exp{iuS(t)}] = E[exp{iu(X1 + · · ·+XN(t))]

=
∞∑
n=0

E[exp{iu(X1 + · · ·+XN(t))}|N(t) = n]P (N(t) = n)

=
∑

E[exp{iu(X1 + · · ·+Xn)}].e−λt(λt)n/n! = e−λt exp{λtϕ(u)}. [7]

From ϕ(u) := E[eiuX ], ϕ′(u) = iE[XeiuX ], ϕ′′(u) = −E[X2eiuX ], so
ϕ′(0) = iE[X] = iµ, say, ϕ′′(0) = −E[X2], and similarly
ψ′(0) = iE[S(t)], ψ′′(0) = −E[S(t)2]. [2]
So differentiating,

ψ′(u) = ϕ′(u).λt.ψ(u); ψ′(0) = λt.ϕ′(0);

ψ′′(u) = λt.ϕ′′(u).ψ(u) + λt.ϕ′(u), ψ′(u) = λtϕ′′(u)ψ(u) + (λt)2[ϕ′(u)]2ψ(u) :

ψ′′(0) = λtϕ′′(0) + (λt)2[ϕ′(0)]2. [2]

E[S(t)] = λtE[X] = λtµ; [3]

var[S(t)] = −ψ′′(0) = [ψ′(0)]2 = −λtϕ′′(0) + (λt)2µ2 − (λt)2µ2 = λtE[X2].
[4]

(ii) If the claim times are Tn, the number N(t) of claims to date is n on
[Tn, Tn+1), jumping to n+ 1 at Tn+1. So TN(t) ≤ t < TN(t)+1. So

TN(t)

N(t)
≤ t

N(t)
<

TN(t)+1

N(t) + 1
.
N(t) + 1

N(t)
.

Let t → ∞: N(t) → ∞ also, through integer values, n say. So the left (a
sample mean – an average of n iid rvs, each Poisson P (λ) with mean λ)
tends to λ a.s., by the Strong Law of Large Numbers. Similarly, so does the
first factor on the right, while the second factor on the right tends to 1 a.s.
Combining, the inequality above gives

t

N(t)
→ λ a.s. :

N(t)

t
→ 1/λ a.s. [7]

(i): Method, results, and most proofs, seen; (ii): unseen.
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Q4 (Finite Markov chains).
A state i in a Markov chain is transient if the chain spends only finitely

long in i (a.s.), recurrent (or persistent) otherwise. [1,1]
The mean recurrence time of a state i is the expectation of the time Ti of

first return to i, starting at i. [1]
A recurrent state (one to which the chain returns infinitely often (i.o.),

a.s.) is positive if the mean recurrence time is finite, null otherwise. [1,1]

Theorem. For a finite Markov chain, it is impossible for all states to be
transient: a finite chain must contain at least one persistent state.

Proof. If the state-space is {1, · · · , N}, for each i and each n

1 =
N∑
j=1

pij(n). (a)

Let n→ ∞: if j is transient, the total expected time in it is finite:
∑

n pij(n) <
∞. So

pij(n) → 0 (n→ ∞). (b)

Were all states transient, letting n→ ∞ in (a) and using (b) would give the
contradiction 1 = 0. So not all states in a finite chain can be transient. // [7]

Theorem. A recurrent state j in a finite chain is positive (= non-null).

Proof. If the finite chain has state-space {1, · · · , N}, assume there is a null
state. Let C be the equivalence class containing it. Since C is closed, we can
consider the subchain induced on C. Then

1 =
∑

k∈C pik(n) (finite sum).
Let n → ∞: each pik(n) → 0, so RHS → 0, giving 1 = 0. This contra-

diction gives the non-existence of null states in a finite chain. // [7]

All states may be :
(i) transient. Trivial example: Z, moving to the right at each step. [2]
(ii) positive recurrent. Trivial example: Z, with each state a trap. [2]
(iii) null recurrent. Example: simple random walk on Z. [2]
Seen – lectures.

N. H. Bingham
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