PROBABILITY FOR STATISTICS: EXAMINATION
SOLUTIONS 2013-14

Q1. (i) Area of an ellipse.

The proof given in lectures uses plane polar coordinates to find the area
of a circle, and then cartesian polar coordinates to reduce to this case by
dilation (or compression) of one axis [see pfsll, on website]. The following
alternative proof uses only one coordinate system.

Let the ellipse E be z%/a* + y*/b* = 1. Parametrise the interior E° by
x =arcosf, y=>brsinf (6 € [0,27],r € [0,1]). As

Ox/0r = acosf = z/r, Oy/Or =bsinf = y/r,
0x/00 = —arsinf = —ay/b, 0y/00 = brcosh = bx/a

the Jacobian is

= abr.

z/r —ay/b 1L/b 5, a, v’z? +a*y?  a*b*r?
: () -0

y/r bx/a = r abr abr

So the area is

27 1 1
A= // dxdy = // Jdrdf :/ d9./ abrdr = 27r.§ab = mab.
o o 0 0

[12]
(ii) Uniform distribution on subgraphs and densities.

We are given a density f and so its subgraph S := {(z,y) : 0 < y < f(z)}.
(a) = (b). Uniform distribution over S is w.r.t. the measure dzdy over S.
Integrating this over 0 < y < f(x) to project onto the first coordinate gives
the image measure f(z)dz, under which the first coordinate, X, has density
f: P(X € [z,z +dx]) = f(x)dx. (6]
(b) = (a). Conversely, as

dedy = f(x)da.dy/ f(z).

if X has density f (as above), and Y|X = z is uniform on [0, f(z)], (X,Y)
is uniform on S. [7]

(i): seen; (ii): unseen (but should be familiar from simulation — this comes
into the rejection method).



Q2 (Weak Law of Large Numbers, WLLN).
Random variables X,, converge in probability to X if

Ve>0, P(X,—X|>¢€)—0 (n — 00). [2]
They converge to X in distribution if

F.(x):=P(X, <z)— F(z) = P(X <x) (n — 00),

at all continuity points x of F. [2]
(a) Convergence in probability implies convergence in distribution, but not
conversely in general. [1]
(b) The converse holds (so the two are equivalent) if the limit X is con-
stant. 1]

We need the following properties of the characteristic function (CF):
(i) (Lévy’s convergence theorem). Convergence in distribution of random
variables is equivalent to convergence of CFs (uniformly on compacta). [2]

(ii). The CF of an independent sum is the product of the CFs. [2]
(iii). If the random variable has & moments (finite), the CF can be expanded
as far as the t* term with negligible error term o(t*) for small . [2]
Recall that (for x real and z, — z complex)
A+ =, 1+ s o). (9]
Theorem (Weak Law of Large Numbers, WLLN). [3]

If X; are iid with mean u,
1 n
— E Xp — 1 (n — 00) in probability.
n
1

Proof. 1f the X have CF ¢(t), then as the mean p exists ¢(t) = 1+iut+ o(t)
as t — 0, by (iii). So by (ii) (X; + ...+ X,,)/n has CF
: Lt
Eexp{it(X: + ...+ Xa)/n} = [o(t/n)]" = [1 + % +o(1/n))",
for fixed ¢t and n — oco. By (x), the RHS has limit ¢"** as n — oco. But e
is the CF of the constant u. So by Lévy’s continuity theorem (i),
(Xi+...+X,)/n—p (n — o0) in distribution.

Since the limit p is constant, this and (b) give

(Xi+...+Xn)/n—p (n — o0) in probability. // 8]

Seen — lectures.



Q3 (Compound Poisson processes).

(i) Let jumps { X7, -+, X,,, - - -} arrive at the epochs of a Poisson process with
rate A [claims, in the insurance context used in lectures — call them claims
below, for definiteness]. Then the number N(¢) of claims in the time-interval
0,¢] is Poisson P(At). If the claims are iid with mean p and CF ¢(u), then
the claim total at time ¢ is S(t) :== X + - - - Xy, with CF

Y(u) = Elexp{iuS(t)}] = Elexp{iu(Xi + - + Xnp)]

=) Elexp{iu(Xi + -+ Xnw)HN() = n]P(N(t) = n)
= Z E| exp{zu Xi+--+X )}].6_’\t()\t)"/n! = e Mexp{Mo(u)}.  [7]
From ¢(u) i= Ele¥), ¢/(u) = iE[Xe"X], ¢"(u) = ~E[X*¥], 50

¢'(0) =iE[X] = iu, say, ¢"(0) = E[X2], and similarly
¥'(0 )—ZE[ ()], ¥"(0) = —E[S(t)’]-
So differentiating,

() = ¢'(u) Aap(u); '(0) = At.¢'(0);
V() = Mg (u) - (u) + A (w), ' (u) = Mt (u)tb(w) + (A)?[¢ ()P (w) -
V"(0) = Atg"(0) + (At)*[¢(0)]*. 2]

E[S(t)] = ME[X] = Mp; 3]
var[S(t)] = —4"(0) = [¥'(0)]* = ]

2]

=Mt (0) + (Mt)*u® — (\)*u® = ME[X?

[4]
(ii) If the claim times are 7T,,, the number N(¢) of claims to date is n on
(15, Tr41), jumping to n + 1 at T5,41. So Ty <t < Tn(y41- SO

T < t Tnw+1 N(t) +1
N(t) — N(t) N({t)+1 N(t)

Let t — oo: N(t) — oo also, through integer values, n say. So the left (a
sample mean — an average of n iid rvs, each Poisson P(\) with mean \)
tends to A a.s., by the Strong Law of Large Numbers. Similarly, so does the
first factor on the right, while the second factor on the right tends to 1 a.s.
Combining, the inequality above gives

t N(t)

W — A a.s. : — /A a.s. [7]

(i): Method, results, and most proofs, seen; (ii): unseen.




Q4 (Finite Markov chains).
A state ¢ in a Markov chain is transient if the chain spends only finitely

long in i (a.s.), recurrent (or persistent) otherwise. [1,1]
The mean recurrence time of a state i is the expectation of the time T; of
first return to 4, starting at i. 1]

A recurrent state (one to which the chain returns infinitely often (i.o.),
a.s.) is positive if the mean recurrence time is finite, null otherwise. [1,1]

Theorem. For a finite Markov chain, it is impossible for all states to be
transient: a finite chain must contain at least one persistent state.

Proof. 1f the state-space is {1,---, N}, for each ¢ and each n

L= _pij(n). (a)

Let n — oo: if j is transient, the total expected time in it is finite: Y p;;(n) <
00. S0

pij(n) =0 (n — 00). (b)
Were all states transient, letting n — oo in (a) and using (b) would give the
contradiction 1 = 0. So not all states in a finite chain can be transient. // [7]

Theorem. A recurrent state j in a finite chain is positive (= non-null).

Proof. 1f the finite chain has state-space {1,---, N}, assume there is a null
state. Let C be the equivalence class containing it. Since C'is closed, we can
consider the subchain induced on C'. Then
L=23 eccpi(n) (finite sum).
Let n — oo: each pi(n) — 0, so RHS — 0, giving 1 = 0. This contra-
diction gives the non-existence of null states in a finite chain. // (7]

All states may be :

(i) transient. Trivial example: Z, moving to the right at each step. [2]
(ii) positive recurrent. Trivial example: Z, with each state a trap. [2]
(iii) null recurrent. Example: simple random walk on Z. [2]

Seen — lectures.
N. H. Bingham



