
PROBABILITY FOR STATISTICS: EXAMINATION
SOLUTIONS, 2012-13

Q1. (i) The joint density of the xi is

f(x) = (2π)−
1
2
n

n∏
i=1

exp{−1

2
x2i } = (2π)−

1
2
n exp{−1

2

n∑
1

x2i } = (2π)−
1
2
n exp{−1

2
∥x∥2}.

The Jacobian of the change of variable is the determinant |O|, which is 1 as O
is orthogonal (= length-preserving), and ∥y∥ = ∥x∥, again by orthogonality.
So the joint density of the yi is

g(y) = (2π)−
1
2
n exp{−∥y∥2} = (2π)−

1
2
n exp{−

n∑
1

y2i },

which says that the yi are iid N(0, 1). [6]
(ii) The condition for a matrix O to be orthogonal is that the rows are of
length 1 and orthogonal vectors. Take the first row as e1, and use Gram-
Schmidt orthogonalisation to find e2 orthogonal to e1, then e3 orthogonal to
e1, e2 etc. The ei form the rows of an orthogonal matrix with first row e1. [6]
(iii) Put Zi := (Xi − µ)/σ, Z := (Z1, . . . , Zn)

T ; then the Zi are iid N(0, 1),

Z̄ = (X̄ − µ)/σ, nS2/σ2 =
∑n

1
(Zi − Z̄)2.

Also ∑n

1
Z2

i =
∑n

1
(Zi − Z̄)2 + nZ̄2,

since
∑n

1Zi = nZ̄. The terms on the right above are quadratic forms, with
matrices A, B say, so we can write∑n

1
Z2

i = ZTAZ + ZTBZ. [6]

PutW := PZ with P a Helmert transformation with first row (1, . . . , 1)/
√
n:

W1 =
1√
n

∑n

1
Zi =

√
nZ̄; W 2

1 = nZ̄2 = ZTBZ.

So by above,

ZTAZ =
∑n

1
(Zi − Z̄)2 = nS2/σ2,=

∑n

2
W 2

i ,

as
∑n

1Z
2
i =

∑n
1W

2
i . But the Wi are independent (by the orthogonality of P ),

so W1 is independent of W2, . . . ,Wn. So W 2
1 is independent of

∑n
2W

2
i . So

nS2/σ2 is independent of n(X̄ − µ)2/σ2, so S2 is independent of X̄. [7]
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Q2. (i) For a random variable X all of whose moments µn := E[Xn] exist,
the moment-generating function (MGF) of X is, for t real,

M(t), or MX(t), := E[etX ]. [1]

(ii) If X, Y are independent with MGFs, X + Y has MGF

MX+Y (t) := E[et(X+Y )]

= E[etX · etY ] (property of exponentials)

= E[etX ] · E[etY ] (etX , etY are independent as X,Y are + Multiplication Th.)

= MX(t) ·MY (t) :

the MGF of an independent sum is the product of the MGFs. [6]
(iii) N(0, 1) has MGF

M(t) =
1√
2π

∫
exp{tx− 1

2
x2}dx

=
1√
2π

∫
exp{−1

2
(x− t)2 +

1

2
t2}dx (completing the square)

= exp{1
2
t2} · 1√

2π

∫
exp{−1

2
u2}du (u := x− t)

= exp{1
2
t2} (normal density). [6]

If X ∼ N(0, 1), (X − µ)/σ ∼ N(0, 1), so has MGF E[et(X−µ)/σ] = e
1
2
t2 .

Replace t by σt and multiply by eµt:

E[etX ] = eµt+
1
2
σ2t2 :

N(µ, σ2) has MGF exp{µt+ 1
2
σ2t2}. [3]

(iv) By (ii) and (iii): X + Y has MGF

exp{µ1t+
1

2
σ2
1t

2} · exp{µ2t+
1

2
σ2
2t

2} = exp{(µ1 + µ2)t+
1

2
(σ2

1 + σ2
2)t

2}.

So X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2): X + Y is normal, with mean µ1 + µ2 and
variance σ2

1 + σ2
2. [6]

(v) The characteristic function (CF) of X is defined by ϕ(t), or ϕX(t) :=
E[eitX ] (t real). So to pass from MGF to CF, formally replace t by it.
This is justified here by analytic continuation (the MGF is entire, so the CF
is entire). All the above goes through – e.g., N(µ, σ2) has CF exp{iµt −
1
2
σ2t2}. [3]
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Q3. (i)

ψ(t) = E[eitY ] = E[exp{it(X1 + . . .+XN)}]
=

∑
n

E[exp{it(X1 + . . .+XN)}|N = n] · P (N = n)

=
∑
n

e−λλn/n! · E[exp{it(X1 + . . .+Xn)}]

=
∑
n

e−λλn/n! · (E[exp{itX1}])n

=
∑
n

e−λλn/n! · ϕ(t)n

= exp{−λ(1− ϕ(t))}. [10]

(ii) Differentiate:
ψ′(t) = ψ(t) · λϕ′(t),

ψ′′(t) = ψ′(t) · λϕ′(t) + ψ(t) · λϕ′′(t).

As ϕ(t) = E[eitX ], ϕ′(t) = E[iXeitX ], ϕ′′(t) = E[−X2eitX ]. So (ϕ(0) = 1
and) ϕ′(0) = iµ, ϕ′′(0) = −E[X2],

ψ′(0) = λϕ′(0) = λ · iµ,

and as also ψ′(0) = iEY , this gives

EY = λµ. [8]

(iii) Similarly,

ψ′′(0) = iλµ · iλµ+ λϕ′′(0) = −λ2µ2 − λE[X2],

and also (ψ(0) = 1, ψ′(0) = iλµ and) ψ′′(0) = −E[Y 2]. So

var Y = E[Y 2]− [EY ]2 = λ2µ2 + λE[X2]− λ2µ2 = λE[X2]. [7]

Aliter. Given N , Y = X1 + . . . + XN has mean NEX = Nµ and variance
N var X = Nσ2. As N is Poisson with parameter λ, N has mean λ and
variance λ. So by the Conditional Mean Formula,

EY = E[E(Y |N)] = E[Nµ] = λµ.

By the Conditional Variance Formula,

var Y = E[var(Y |N)] + var E[Y |N ] = E[Nvar X] + var[N EX]

= EN · var X + var N · (EX)2 = λ[E(X2)− (EX)2] + λ · (EX)2 = λE[X2].
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Q4. (i) The transition probabilities are given by

pi,i−1 =
i

d
, pi,i+1 =

d− i

d
, pij = 0 otherwise. [3]

(ii) There is no limit distribution, as the chain is periodic with period 2.(
d

j − 1

)
(d−j+1) =

d!

(j − 1)!(d− j + 1)!
.(d−j+1) =

d!

(j − 1)!(d− j)!
=

(
d

j

)
.j,

(a)(
d

j + 1

)
(j +1) =

d!

(j + 1)!(d− j − 1)!
(j +1) =

d!

j!(d− j − 1)!
=

(
d

j

)
.(d− j).

(b)
So by (a) and (b) (π is a prob. distribution, by the binomial theorem),

(πP )j =
∑
i

πipij = πj−1pj−1,j + πj+1pj+1,j

= 2−d

(
d

j − 1

)
(d− j + 1)

d
+2−d

(
d

j + 1

)
(j + 1)

d
=

2−d

d

(
d

j

)
{j+(d−j)} = 2−d

(
d

j

)
= πj.

This says that πP = π, so π is invariant. [7]
(iii)

πipi,i+1 = 2−d

(
d

i

)
.
d− i

d
= 2−d d!

(d− i)!i!
.
d− i

d
= 2−d

(
d− 1

i

)
,

πi+1pi+1,i.
i+ 1

d
= 2−d

(
d

i+ 1

)
= 2−d (d− 1)!

i!(d− i− 1)!
.
i+ 1

d
= 2−d

(
d− 1

i

)
,

proving detailed balance, and so reversibility. [7]
Hence we can calculate the invariant distribution (unique by (DB)):

i = 0 : π1 = π0
p01
p10

=
π0
1
d

; i = 1 : π2 = π1
p12
p21

=
π0
1
d

.
1− 1

d
2
d

, . . . ,

πi =
π0
1
d

.
1− 1

d
2
d

. . . . .
1− i−1

d
i
d

= π0.
d(d− 1) . . . (d− i+ 1)

1.2 . . . .i
= π0

(
d

i

)
.

Then
∑

i πi = 1 gives

π0
∑
i

(
d

i

)
= π0.2

d = 1, π0 = 2−d, πi = 2−d

(
d

i

)
. [8]
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