
PfS: HANDOUT (for information only – not examinable)

Supplementary material – relevant to various sections.
1. III.1. The Gamma function Γ. Many of the constants in the standard
densities in Statistics involve the Gamma function, so we record here what
we will need. For complex z = x + iy with Re z = x > 0, the Gamma
function Γ(z) is defined by

Γ(z) :=
∫ ∞

0
tx−1e−tdt

(note that the integral diverges at 0 for x = 0). Integrating by parts,

Γ(z + 1) = zΓ(z),

the functional equation for the Gamma function. Using this, one can extend
the domain of definition from Re z > 0 to Re z > −1 (the pole at z = 0 gives
another at z = −1). Repeating this indefinitely, we can extend the domain of
definition to the whole complex z-plane, and the extended function is regular
except at poles z = 0,−1, . . . ,−n, . . .. This process is called Analytic Con-
tinuation: for details, see e.g. my website, link to M2P3 Complex Analysis,
L22. Also from the functional equation, we see by induction that

Γ(n+ 1) = n! (n = 0, 1, 2, . . .);

thus Gamma provides a continuous extension to the factorial.
We have

Γ(
1

2
) =

√
π;

this is equivalent to the standard normal density being a density.
We will need Stirling’s formula (James STIRLING (1692-1770) in 1730):

Γ(x) ∼
√
2πe−xxx− 1

2 (x → ∞); n! ∼
√
2πe−nnn+ 1

2 (n → ∞).

Beta functions. We will also need the closely related Beta function, B(α, β)
(α, β > 0):

B(α, β) :=
∫ 1

0
xα−1(1− x)β−1dx.

By Euler’s integral for the Beta function, this can be expressed in terms of
Gammas:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

1



2. III.2: Notes on LLN
The first result of this kind is the WLLN for Bernoulli trials (tossing a

coin that falls heads with probability p, tails with probability q := 1− p, due
to Jakob BERNOULLI (1654-1705); Ars conjectandi, 1713, posth.) The gen-
eral WLLN above, and its strengthening the SLLN below, constitute precise
forms of the ‘Law of Averages’, known to the man in the street. The passage
from Bernoulli’s theorem of 1713 (perhaps the earliest substantial theorem
in Probability Theory) to Kolmogorov’s SLLN in 1933, 220 years later, is
remarkable both for its length and for the part it played in the 1933 birth of
modern measure-theoetic Probability Theory.

The CLT for Bernoulli trials is due to Abraham de MOIVRE (1667-1754),
Doctrine of Chances 1738 (de Moivre found the normal distribution in 1733),
later extended by P. S. de LAPLACE (1749-1827), Théorie Analytiques des
Probabilités, 1812. The general CLT is due to J. W. LINDEBERG (1876-
1932) in 1922 (the name ‘central limit theorem’ is due to Pólya, also in 1922).
The CLT is the precise form of the ‘Law of Errors’, known to the physicist
in the street as saying ‘errors are normally distributed about the mean’.
Note. 1. The CLT largely explains why the normal distribution is so ubiqui-
tous in Statistics – basically, this is why Statistics works.
2. The CLT and the normal distribution are static. We shall need their
dynamic counterparts. The stochastic process (dynamic counterpart) corre-
sponding to the normal distribution is Brownian motion (VI.1); that of the
CLT is the Erdös-Kac-Donsker invariance principle.

LLN, CLT and LIL complete the trilogy of classical limit theorems in
Probability Theory.

The strong law has two main methods of proof:
(i) by Kolmogorov’s inequality [see e.g. SA, I.11 L3];
(ii) by Etemadi’s method of geometric subsequences [SP, L14]. This has
the advantage that it applies with the Xn only pairwise independent; Kol-
mogorov’s inequality does not extend to pairwise independence.

The strong law has two important generalisations:
(i) the martingale convergence theorem [see e.g. SA, L5];
(ii) the (Birkhoff-Khinchin) ergodic theorem (G. D. BIRKHOFF (1884-1944)
in 1931, Khinchin in 1933).
Note. 1. The term ergodic arises in Statistical Mechanics; there one is con-
cerned with whether time averages and phase averages coincide.
2. Regarding how a result of 1931 can be a generalisation of a result of 1933:
the ergodic theorem generalises the direct part of the LLN (existence of the
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mean implies a.s. convergence), but there is no converse.
3. III.3: Kolmogorov-Smirnov.

Variants on the problem above include:
1. The two-sample Kolmogorov-Smirnov test.

Given two populations, with unknown distributions F , G, we wish to test
whether they are the same, on the basis of empiricals Fn, Gm.
2. Kolmogorov-Smirnov tests with parameters estimated from the data.

A common case here is testing for normality. In one dimension, our hy-
pothesis of interest is whether or not F ∈ {N(µ, σ2) : µ ∈ R, σ > 0}. Here
(µ, σ) are nuisance parameters: they occur in the formulation of the problem,
but not in the hypothesis of interest.

Although the Glivenko-Cantelli Theorem is useful, it does not tell us, say,
whether or not the law F is absolutely continuous, discrete etc. For, there are
discrete G arbitrarily close to an absolutely continuous F (discretise), and
absolutely continuous F arbitrarily close to a discrete F (by smooth approx-
imation to F at its jump points). So sampling alone cannot tell us what type
of law F is – absolutely continuous (with density f , say), discrete, continuous
singular, or some mixture of these. So it makes sense for the statistician to
choose what kind of population distribution he is going to assume. Often
(usually), this will be absolutely continuous; again, it makes sense to assume
what smoothness properties of the density f we will assume. This leads on
to the important subject of density estimation; see e.g. SMF Day 3.
4. III.3: Reparametrisation and the Delta Method.

Suppose we are using parameter θ, but wish to change to some alternative
parametrisation, g(θ), where g is continuously differentiable. A CLT for θ
such as √

n(Tn − θ) → N(0, σ(θ)2)

(as holds above, with Tn the MLE θ̂ based on a sample of size n and σ2(θ) =
1/I(θ)) transforms into a CLT for g(θ):

√
n(g(Tn)− g(θ)) → N(0, [g′(θ)σ(θ)]2).

For,
g(Tn)− g(θ) = (Tn − θ)(g′(θ) + ϵn),

with ϵn a (random) error term – negligible for large n, so

g(Tn)− g(θ) ∼ (Tn − θ)g′(θ).
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Since var(cX) = c2 var X, the result follows.
This is called the delta method, and is often useful. It can be extended

from random variables to stochastic processes (i.e., from one or finitely many
to infinitely many dimensions), and we shall meet it again later.
5. III.3: Location and scale: type.
Example: Temperature. In the UK, before entry to the EU (or Common
Market as it was then), temperature was measured in degrees Fahrenheit, F
(freezing point of water 32oF , boiling point 212oF ; these odd choices are only
of historical interest – but dividing the freezing-boiling range into 180 parts
rather than 100 is better attuned to homo sapiens being warm-blooded, and
most of us having trouble with decimals and fractions!) The natural choice
for freezing is 0; 100 parts for the freezing-boiling range is also natural when
using the metric system – whence the Centigrade (= Celsius) scale. Back
then, one used F for ordinary life, C for science, and the conversion rules

C =
5

9
(F − 32), F =

9

5
C + 32

were part of the lives of all schoolchildren (and the mechanism by which
many of them grasped the four operations of arithmetic!)
Pivotal quantities.

A pivotal quantity, or pivot, is one whose distribution is independent of
parameters. Pivots are very useful in forming confidence intervals.
Defn. A location family is one where, for some reference density f , the
density has the form

f(x− µ);

here µ is a location parameter. A scale family (usually for x ≥ 0) is of the
form

f(x/σ);

here σ is a scale parameter. A location-scale family is of the form

f(
x− µ)

σ
).

Pivots here are

X̄ − µ (location); X̄/σ (scale);
X̄ − µ

σ
(location-scale).
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Examples. The normal family N(µ, σ2) is a location-scale family.
The Cauchy location family is

f(x− µ) =
1

π[1 + (x− µ)2]
.

In higher dimensions, the location parameter is the mean µ (now a vector);
the scale parameter is now the covariance matrix

Σ = (σij), σij := cov(Xi, Xj) = E[(Xi − EXi)(Xj − EXj)].

Because the choice of location and scale are often arbitrary (as with the
temperature example above), we often work ‘modulo location and scale’, and
look at the ‘type’ of a distribution.
6. V.2: Martingales in discrete time

The word ‘martingale’ is taken from an article of harness, to control a
horse’s head. The word also means a system of gambling which consists in
doubling the stake when losing in order to recoup oneself (1815).
Thackeray: ‘You have not played as yet? Do not do so; above all avoid a
martingale if you do.’
Examples.
1. Mean zero random walk: Sn =

∑
Xi, withXi independent with E(Xi) = 0

is a mg (submg: positive mean; supermg: negative mean).
2. Stock prices: Sn = S0ζ1 · · · ζn with ζi independent positive r.vs with finite
first moment.
3. Accumulating data about a random variable ([W], pp. 96, 166–167). If
ξ ∈ L1(Ω,F ,P), Mn := E(ξ|Fn) (so Mn represents our best estimate of ξ
based on knowledge at time n), then using iterated conditional expectations

E[Mn|Fn−1] = E[E(ξ|Fn)|Fn−1] = E[ξ|Fn−1] = Mn−1,

so (Mn) is a martingale – indeed, a ‘nice’ mg; see below.
Stopping Times and Optional Stopping

Recall that τ taking values in {0, 1, 2, . . . ; +∞} is a stopping time if

{τ ≤ n} = {ω : τ(ω) ≤ n} ∈ Fn ∀ n ≤ ∞.

From {τ = n} = {τ ≤ n} \ {τ ≤ n− 1} and {τ ≤ n} =
∪

k≤n{τ = k}, we see
the equivalent characterization

{τ = n} ∈ Fn ∀ n ≤ ∞.
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Call a stopping time τ bounded if there is a constant K such that P (τ ≤
K) = 1. (Since τ(ω) ≤ K for some constant K and all ω ∈ Ω \ N with
P (N) = 0 all identities hold true except on a null set, i.e. a.s.)
Example. Suppose (Xn) is an adapted process and we are interested in the
time of first entry of X into a Borel set B (e.g. B = [c,∞)):

τ = inf{n ≥ 0 : Xn ∈ B}.

Now {τ ≤ n} =
∪

k≤n{Xk ∈ B} ∈ Fn and τ = ∞ if X never enters B. Thus
τ is a stopping time. Intuitively, think of τ as a time at which you decide
to quit a gambling game: whether or not you quit at time n depends only
on the history up to and including time n – NOT the future. Thus stopping
times model gambling and other situations where there is no foreknowledge,
or prescience of the future; in particular, in the financial context, where there
is no insider trading. Furthermore since a gambler cannot cheat the system
the expectation of his hypothetical fortune (playing with unit stake) should
equal his initial fortune.

Theorem (Doob’s Stopping-Time Principle, STP). Let τ be a bounded
stopping time and X = (Xn) a martingale. Then Xτ is integrable, and

E(Xτ ) = E(X0).

Proof. Assume τ(ω) ≤ K for all ω (K integer), and write

Xτ(ω)(ω) =
∞∑
k=0

Xk(ω)I(τ(ω) = k) =
K∑
k=0

Xk(ω)I(τ(ω) = k).

Then

E(Xτ ) = E[
K∑
k=0

XkI(τ = k)] (by the decomposition above)

=
K∑
k=0

E[XkI(τ = k)] (linearity of E)

=
∑K

k=0 E[E(XK |Fk)I(τ = k)] (X a mg, {τ = k} ∈ Fk )

=
K∑
k=0

E[XKI(τ = k)] (defn. of conditional expectation)

= E[XK

K∑
k=0

I(τ = k)] (linearity of E)
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= E[XK ] (the indicators sum to 1)

= E[X0] (X a mg) //.

If X = (Xn) is a supermg, one obtains similarly

EXτ ≤ EX0.

Also, alternative conditions such as
(i) X = (Xn) is bounded (|Xn|(ω) ≤ L for some L and all n, ω);
(ii) Eτ < ∞ and (Xn −Xn−1) is bounded;
suffice for the proof of the stopping time principle – which is important in
many areas of statistics, such as sequential analysis.

We now wish to create the concept of the σ-algebra of events observable
up to a stopping time τ , in analogy to the σ-algebra Fn which represents the
events observable up to time n.
Definition. For τ a stopping time, the stopping time σ−algebra Fτ is

Fτ := {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, for all n}.

Proposition. For τ a stopping time, Fτ is a σ−algebra.

Proof. Clearly Ω, ∅ are in Fτ . Also for A ∈ Fτ we find

Ac ∩ {τ ≤ n} = {τ ≤ n} \ (A ∩ {τ ≤ n}) ∈ Fn,

thus Ac ∈ Fτ . Finally, for a family Ai ∈ Fτ , i = 1, 2, . . . we have( ∞∪
i=1

Ai

)
∩ {τ ≤ n} =

∞∪
i=1

(Ai ∩ {τ ≤ n}) ∈ Fn,

showing
∪∞

i=1 Ai ∈ Fτ . //

One can show similarly that for σ, τ stopping times with σ ≤ τ , Fσ ⊆ Fτ .
Similarly, for any adapted sequence of random variables X = (Xn) and a.s.
finite stopping time τ , define

Xτ :=
∞∑
n=0

XnI(τ = n).

Then Xτ is Fτ -measurable.
We now give an important extension of the Stopping-Time Principle.
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Theorem (Doob’s Optional-Sampling Theorem, OST). Let X = (Xn)
be a mg and σ, τ be bounded stopping times with σ ≤ τ . Then

E [Xτ |Fσ] = Xσ, and so E(Xτ ) = E(Xσ).

Proof. First observe that Xτ and Xσ are integrable (use the sum representa-
tion and the fact that τ is bounded by an integerK) andXσ is Fσ-measurable
by above. So it only remains to prove that

E(IAXτ ) = E(IAXσ) ∀A ∈ Fσ.

For any such fixed A ∈ Fσ, define ρ by

ρ(ω) = σ(ω)IA(ω) + τ(ω)IAc(ω).

Since
{ρ ≤ n} = (A ∩ {σ ≤ n}) ∪ (Ac ∩ {τ ≤ n}) ∈ Fn

ρ is a stopping time, and from ρ ≤ τ we see that ρ is bounded. So the STP
implies E(Xρ) = E(X0) = E(Xτ ). But

E(Xρ) = E (XσIA +XτIAc) , E(Xτ ) = E (XτIA +XτIAc) .

So subtracting yields the result. //

Write Xτ = (Xτ
n) for the sequence X = (Xn) stopped at time τ , where

we define Xτ
n(ω) := Xτ(ω)∧n(ω). One can show

(i) If τ is a stopping time and X is adapted, then so is Xτ .
(ii) If τ is a stopping time and X is a mg (supermg, submg), then so is Xτ .
Examples and Applications.
1. Simple Random Walk. Recall the simple random walk: Sn :=

∑n
k=1 Xk,

where the Xn are independent tosses of a fair coin, taking values ±1 with
equal probability 1/2. Suppose we decide to bet until our net gain is first
+1, then quit. Let τ be the time we quit; τ is a stopping time. The stopping
time τ has been analyzed in detail (see e.g. [GS], 5.3, or Ex. 3.4). From this:
(i) τ < ∞ a.s.: the gambler will certainly achieve a net gain of +1 eventually;
(ii) Eτ = +∞: the mean waiting-time for this is infinity. Hence also:
(iii) No bound can be imposed on the gambler’s maximum net loss before his
net gain first becomes +1.

At first sight, this looks like a foolproof way to make money out of noth-
ing: just bet until you get ahead (which happens eventually, by (i)), then
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quit. But as a gambling strategy, this is hopelessly impractical: because of
(ii), you need unlimited time, and because of (iii), you need unlimited capital
– both unrealistic.

Notice that the Stopping-time Principle fails here: we start at zero, so
S0 = 0, ES0 = 0; but Sτ = 1, so ESτ = 1. This example shows two things:
1. Conditions are indeed needed here, or the conclusion may fail (none of the
conditions in STP or the alternatives given are satisfied in this example).
2. Any practical gambling (or trading) strategy needs to have some integra-
bility or boundedness restrictions to eliminate such theoretically possible but
practically ridiculous cases.
7. VI.1: Construction of Brownian motion; Paley-Wiener-Zygmund theorem
Covariance. Before addressing existence, we first find the covariance func-
tion. For s ≤ t, Wt = Ws + (Wt −Ws), so as E(Wt) = 0,

cov(Ws,Wt) = E(WsWt) = E(W 2
s ) + E[Ws(Wt −Ws)].

The last term is E(Ws)E(Wt −Ws) by independent increments, and this is
zero, so

cov(Ws,Wt) = E(W 2
s ) = s (s ≤ t) : cov(Ws,Wt) = min(s, t).

A Gaussian process is specified by its mean function and its covariance func-
tion, so among centered (zero-mean) Gaussian processes, the covariance func-
tion min(s, t) serves as the signature of Brownian motion.
Finite-dimensional Distributions.

For 0 ≤ t1 < . . . < tn, the joint law of X(t1), X(t2), . . . , X(tn) can be
obtained from that of X(t1), X(t2)−X(t1), . . . , X(tn)−X(tn−1). These are
jointly Gaussian, hence so are X(t1), . . . , X(tn): the finite-dimensional dis-
tributions are multivariate normal. Recall that the multivariate normal law
in n dimensions, Nn(µ,Σ) is specified by the mean vector µ and the covari-
ance matrix Σ (non-negative definite). So to check the finite-dimensional
distributions of BM – stationary independent increments with Wt ∼ N(0, t)
– it suffices to show that they are multivariate normal with mean zero and
covariance cov(Ws,Wt) = min(s, t) as above.
Construction of BM.

It suffices to construct BM for t ∈ [0, 1]). This gives t ∈ [0, n] by dila-
tion, and t ∈ [0,∞) by letting n → ∞. First, take L2[0, 1], and any complete
orthonormal system (cons) (ϕn) on it. Now L2 is a Hilbert space, with inner
product

⟨f, g⟩ =
∫ 1

0
f(x)g(x)dx (or

∫
fg),
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so norm ∥f∥ := (
∫
f2)1/2). By Parseval’s identity,∫ 1

0
fg =

∞∑
n=0

⟨f, ϕn⟩⟨g, ϕn⟩

(where convergence of the series on the right is in L2, or in mean square:
∥f −∑n

0 ⟨f, ϕk⟩ϕk∥ → 0 as n → ∞). Now take, for s, t ∈ [0, 1],

f(x) = I[0,s](x), g(x) = I[0,t](x).

Parseval’s identity becomes

min(s, t) =
∞∑
n=0

∫ s

0
ϕn(x)dx

∫ t

0
ϕn(x)dx.

Now take (Zn) independent and identically distributed N(0, 1) (we can con-
struct these, indeed from one X ∼ U [0, 1]), and write

Wt =
∞∑
n=0

Zn

∫ t

0
ϕn(x)dx.

This is a sum of independent zero-mean random variables. Kolmogorov’s
theorem on random series says that it converges a.s. if the sum of the vari-
ances converges (we quote this). This is

∑∞
n=0(

∫ t
0 ϕn(x)dx)

2, = t by above.
So the series above converges a.s. (wlog, everywhere, excluding a null set).
The Haar System. Define

H(t) := 1 on [0,
1

2
), −1 on [

1

2
, 1), 0 else.

Write H0(t) ≡ 1, and for n ≥ 1, express n in dyadic form as n = 2j + k for
a unique j = 0, 1, . . . and k = 0, 1, . . . , 2j − 1. Using this notation for n, j, k
throughout, write

Hn(t) := 2j/2H(2jt− k)

(so Hn has support [k/2j, (k + 1)/2j]). So if m,n (m ̸= n) have the same
j, HmHn ≡ 0, while if m,n have different js, one can check that HmHn is
2(j1+j2)/2 on half its support, −2(j1+j2)/2 on the other half, so

∫
HmHn = 0.

Also H2
n is 2j on [k/2j, (k + 1)/2j], so

∫
H2

n = 1. Combining:∫
HmHn = δmn,
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and (Hn) form an orthonormal system, called the Haar system. For com-
pleteness: the indicator of any dyadic interval [k/2j, (k + 1)/2j] is in the
linear span of the Hn (difference two consecutive Hns and scale). Linear
combinations of such indicators are dense in L2[0, 1]. Combining: the Haar
system (Hn) is a complete orthonormal system in L2[0, 1]. One has∫ t

0
H(u)du =

1

2
∆(t),

∫ t

0
Hn(u)du = λn∆n(t),

where λ0 = 1 and for n ≥ 1, λn = 1
2
× 2−j/2 (n = 2j + k ≥ 1).

The Schauder System.
We obtain the Schauder system by integrating the Haar system. Consider

the triangular function (or ‘tent function’)

∆(t) = 2t on [0,
1

2
), 2(1− t) on [−1

2
, 1], 0 else.

Write ∆0(t) := t, ∆1(t) := ∆(t) (‘mother wavelet’), and define the nth
Schauder function ∆n (‘daughter wavelets’) by

∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1)

(∆n has support [k/2j, (k + 1)/2j], so is ‘localized’ on this dyadic interval,

small for n, j large). The
∑2j

n=0 below gives the jth stage in the Lévy broken-
line construction.

Theorem (Paley-Wiener-Zygmund, 1933). For (Zn)
∞
0 independentN(0, 1)

random variables, λn, ∆n as above,

Wt :=
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1], a.s. The process W = (Wt : t ∈ [0, 1]) is Brow-
nian motion.

Lemma. For Zn independent N(0, 1),

|Zn| ≤ C
√
log n ∀n ≥ 2,

for some random variable C < ∞ a.s.

11



Proof of the Lemma. For x > 1,

P (|Zn| ≥ x) =
2√
2π

∫ ∞

x
e−

u2

2 du ≤
√
2/π

∫ ∞

x
ue−

u2

2 du =
√
2/πe−

x2

2 .

So for any a > 1,

P (|Zn| >
√
2a log n) ≤

√
2/π exp{−a log n} =

√
2/πn−a.

As
∑

n−a < ∞ for a > 1, the Borel-Cantelli lemma (see e.g. SP L13) gives

P (|Zn| >
√
2a log n for infinitely many n) = 0.

So

C := sup
n≥2

|Zn|√
log n

< ∞ a.s.

Proof of the Theorem.
1. Convergence. Choose J and M ≥ 2J ; then

∞∑
n=M

λn|Zn|∆n(t) ≤ C
∞∑
M

λn

√
log n∆n(t).

The right is majorized (using n = 2j + k < 2j+1, log n ≤ (j + 1) log 2) by

C
∞∑
J

2j−1∑
k=0

1

2
2−j/2

√
j + 1∆2j+k(t),

and ∆n(.) ≥ 0, so the series is absolutely convergent). In the inner sum, only
one term is non-zero (t can belong to only one dyadic interval [k/2j, (k +
1)/2j)), and each ∆n(t) ∈ [0, 1]. So

LHS ≤ C
∞∑
j=J

1

2
2−j/2

√
j + 1 ∀t ∈ [0, 1],

and this tends to 0 as J → ∞, so as M → ∞. So the series
∑

λnZn∆n(t) is
absolutely and uniformly convergent, a.s. Since continuity is preserved under
uniform convergence and ∆n(t) is continuous, Wt is continuous in t.
2. Covariance. By absolute convergence and Fubini’s theorem (see e.g. SP
L9),

E(Wt) = E

( ∞∑
0

λnZn∆n(t)

)
=
∑

λn∆n(t)E(Zn) =
∑

0 = 0.
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So the covariance is

E(WsWt) = E

[∑
m

Zm

∫ s

0
ϕm ×

∑
n

Zn

∫ t

0
ϕn

]
=
∑
m,n

E[ZmZn]
∫ s

0
ϕm

∫ t

0
ϕn,

or as E[ZmZn] = δmn,

∑
n

∫ s

0
ϕm

∫ t

0
ϕn = min(s, t),

by the Parseval calculation above. //

8. VII.3: Algebraic approach to Markov chains
We give an algebraic approach to the limit theorem of VII.3. If the e-

values are λi, write vi for the right (column) e-vectors,

Pvi = λivi,

and ui for the left (row) e-vectors,

uiP = λiui.

Form the matrices U (column of rows ui), V (row of columns vi), Λ :=
diag(λi). Then

UP = ΛU, PV = ΛV.

If the e-values λi are distinct, the ui are linearly independent, and similarly
the vi are independent (we quote this from Linear Algebra). So U , V are
non-singular, and

P = U−1ΛU = V ΛV −1.

For i ̸= j,
uiPvj = uiλjvj = λjuivj,

and symmetrically
uiPvj = λiuivj.

Subtract:
(λi − λj)uivj = 0 (i ̸= j).

As the e-values are assumed distinct, this gives

uivj = 0 (i ̸= j).
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So ui is orthogonal to all vj for j ̸= i, so not orthogonal to vi (the vs span
the whole space). So by scaling we can take uivi = 1, giving uivj = δij, or

UV = I : U = V −1.

Write
Ai := viui

(”column times row = matrix”: Ai has rank one, and the general rank-one
matrix is of this column-times-row form). Then

AiAj = viuivjuj = 0 (i ̸= j), AiAi = viuiviui = viui = Ai :

AiAj = δijAi

(so each Ai is idempotent). We can now re-write

P = U−1ΛU = V ΛU

as
P =

∑
i

viλiui =
∑
i

λiviui =
∑
i

λiAi.

Then by induction on n,
P n =

∑
i

λn
i Ai.

One can now see what will happen as n → ∞. All e-values with modulus
< 1 will die out, leaving just those of modulus 1 – the d dth roots of unity
in the case of period d > 1, and only the PF e-value λ1 = 1 in the aperiodic
case. So for P aperiodic,

P n → A1 = v1u1 (n → ∞).

As v1 is a columns of 1s, the matrix v1u1 is a column of identical rows u1,
the PF left-e-vector. This re-proves the Theorem – an algebraic proof, under
the algebraic assumption that all e-values are distinct.

9. VII.1: Mathematical genetics (Fisher-Wright model, and more generally)
From the Wikipedia entry for Wright:

”Scientific achievements and credits.
His papers on inbreeding, mating systems, and genetic drift make him a

principal founder of theoretical population genetics, along with R. A. Fisher
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and J. B. S. Haldane1. Their theoretical work is the origin of the modern
evolutionary synthesis or neodarwinian synthesis. Wright was the inventor
of the inbreeding coefficient, a standard tool in population genetics. He
was the chief developer of the mathematical theory of genetic drift, which is
sometimes known as the Sewall Wright effect, cumulative stochastic changes
in gene frequencies that arise from random births, deaths, and Mendelian
segregations in reproduction. Wright was convinced that the interaction of
genetic drift and the other evolutionary forces was important in the process
of adaptation. He described the relationship between genotype or phenotype
and fitness as fitness surfaces or fitness landscapes. On these landscapes
fitness was the height, plotted against horizontal axes representing the allele
frequencies or the average phenotypes of the population. Natural selection
would lead to a population climbing the nearest peak, while genetic drift
would cause random wandering.”

In this model, the 2N genes in each generation are obtained by sampling
with replacement from the genes in the previous one, leading to

pij =

(
2N

j

)
(i/2N)j(1− (i/2N))2N−j (i, j = 0, . . . , 2N).

Note. Mathematical genetics makes extensive use of Markov chain methods
and models. For background, see e.g. Ewens [E].
Note: Mathematics and Biology.

The two foundations of modern biology are the Darwinian theory of nat-
ural selection (Charles DARWIN (1809-1882): On the Origin of Species by
means of Natural Selection, 1859 – The Origin of Species), and Mendelian
genetics (Gregor MENDEL (1822-1884): Experiments on plant hybridiza-
tion, 1866). Mendel’s work was largely forgotten, but rediscovered in 1900.
It was thought at first that Mendelian genetics and Darwinian natural se-
lection were incompatible, but this is not so; the two were synthesized by
Wright, Fisher and Haldane. From the Wikipedia entry for Mendel:
”Mendel, Darwin and Galton.
Mendel lived around the same time as the British naturalist Charles Dar-
win (1809-1882), and many have fantasized about a historical evolutionary
synthesis of Darwinian natural selection and Mendelian genetics during their
lifetimes. Mendel had read a German translation of Darwin’s Origin (as
evidenced by underlined passages in the copy in his monastery), after com-

1J. B. S. HALDANE (1892-1964)
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pleting his experiments but before publishing his paper. Some passages in
Mendel’s paper are Darwinian in character, evidence that the Origin of the
Species influenced Mendel’s writing. Darwin did not have a copy of Mendel’s
paper, but he did have a book by Focke with references to it. The leading
expert in heredity at this time was Darwin’s cousin Francis Galton2 who
had mathematical skills that Darwin lacked and may have been able to un-
derstand the paper had he seen it. In any event, the modern evolutionary
synthesis did not start until the 1920s, by which time statistics had become
advanced enough to cope with genetics and evolution.”
One might add probability and stochastic processes to this last sentence!

The point to note here is that Mathematics and Biology have much to
contribute to each other. Within the last century, Biology has developed
from being a largely descriptive science to being quantitative. Mathematics
– in particular, Statistics and Stochastic Processes – has played a vital role
here, and continues to do so, e.g. in the topical and important area of the
Human Genome Project. In the other direction, problems from the biological
sciences have been important motivation in the development of many math-
ematical and statistical tools. The point is worth making, for two reasons:
(i) not all students realize that Mathematics can be applied to Biology and
the Life Sciences;
(ii) one still encounters a tendency by some in the ‘Exact Sciences’ (as Physics
and Chemistry, and indeed Mathematics, are sometimes called) to look down
on Biology and the Life Sciences as ‘soft science’ rather than ‘hard science’.
This attitude is now a good half-century out of date.

Another area where mathematical modelling (stochastic and determinis-
tic) in the life sciences is of prime importance is the modelling of infectious
diseases such as HIV/AIDS, of Foot and Mouth disease (recall the outbreak
of 2001) and of rabies (endemic on the continent, but not in the UK).

2Sir Francis GALTON (1822-1911): Hereditary genius and regression, in 1869
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