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Proof. When we subtract µ from each Xk, we change the mean from µ to
0 and the second moment from µ2 to the variance σ2. So by the moments
property of CFs, Xk−µ has CF 1− 1

2
σ2t2+o(t2) as t → 0. SoX1+. . .+Xn−nµ

has CF

E exp{it(X1 + . . .+Xn − nµ)} = [1− 1

2
σ2t2 + o(t2)]n (t → 0).

Replace t by t/(σ
√
n) and let n → ∞:

E exp{it(X1+. . .+Xn−nµ)/(σ
√
n)} = [1−1

2
.
t2

n
+o(1/n)]n → exp{−t2/2} (n → ∞),

by above. The left is the CF of (Sn − nµ)/(σ
√
n); the right is the CF of

Φ = N(0, 1). By the continuity theorem for CFs, this gives

(Sn − nµ)/(σ
√
n) → Φ = N(0, 1) (n → ∞) in distribution. //

3. The strong law of large numbers (SLLN); the law of the iterated
logarithm (LIL); the Glivenko-Cantelli and Kolmogorov-Smirnov
theorems.

The strong law of large numbers (SLLN) is due to Kolmogorov in 1933
(in the Grundbegriffe).

Theorem (Strong Law of Large Numbers (SLLN), Kolmogorov (1933)).
If X1, . . . , Xn, . . . are iid random variables in L1 with mean µ, then

Sn/m → µ (n → ∞) a.s.

Conversely, if
Sn/n → c (n → ∞) a.s.

for some constant c, then the X ∈ L1 (i.e. E[|Xn|] < ∞, and E[X] = c.

As its name implies, the SLLN is a much stronger statement than the
WLLN. But as they hold under the same conditions, we may speak loosely
of LLN, when we mean either.
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The law of the iterated logarithm (LIL). Observe that in the LLN we divide
by n and get convergence in probability (weak LLN) or almost surely (strong
LLN); in the CLT we divide by

√
n and get convergence in distribution. We

might ask whether one can ‘split the difference’: divide by something be-
tween

√
n and n, and get some other kind of convergence statement. We

can. We quote (Khinchin, 1924):

Theorem (Law of the iterated logarithm (LIL). If X1, . . . , Xn, . . . are
iid random variables with mean µ and variance σ2, Sn := X1+ . . .+Xn, then

lim sup
(Sn − nµ)

σ
√
2n log log n

= +1 a.s., lim inf . . . = −1 a.s.

All points in [−1, 1] are limit points of subsequences, a.s., but no others.

We summarise the conclusion of LIL in symbols as:

(Sn − nµ)/(σ
√
2n log log n) →→ [−1, 1] a.s.

The Skorohod representation theorem; Slutsky’s theorem
Recall (L8, 9) our use of complete metrics. A set A in a metric space S

is dense if every point in S is a limit of a convergent sequence of points in A
(motivating example: the rationals are dense in the reals). A metric space
S is called separable if it has a countable dense set (motivating example: the
reals are separable, as the rationals are countable and dense). A complete
separable metric space is called a Polish space.
Note. 1. The Polish spaces are the ‘nice’ spaces on which to work.
2. The term honours the pioneering work done by Polish mathematicians
here, particularly between the two World Wars (before WWI Poland did
not exist as a country; Polish mathematics never fully recovered from the
devastation of WWII).

The Skorohod representation theorem (A. V. SKOROHOD (1930-2011) in
1956) says that, in a Polish space (such as the real line, or Euclidean space
of higher dimensions – all we will need), if we have a sequence of random
variables

Xn → X (n → ∞) in distribution, (= weakly),

then we can construct random variables ξn, ξ such that

Xn =d ξn, X =d ξ
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(using ”=d” for ”equals in distribution”), and

ξn → ξ a.s.(= strongly).

For proof, see e.g. Dudley [D], 11.4, Kallenberg [K], Th. 4.30 or Bogachev
[B], Vol, 2, 8.5.

If f is continuous, then

f(ξn) → f(ξ) a.s.,

and
f(Xn) =d f(ξn), f(X) =d f(ξ).

So
f(Xn) → f(X) in distribution.

This is an example of the continuous mapping theorem in the theory of weak
convergence of probability measures, for which see e.g. [Bil].

Taking Xn as a random 2-vector, and writing this as (Xn, Yn), one gets
various results known as Slutzky’s theorem (E. E. SLUTZKY (1880-1948) in
1925):
if Xn → X in distribution, Yn → c constant in distribution (= in probability,
as the limit is constant – recall the proof of the WLLN), then

Xn + Yn → X + c, XnYn → cX in distributiion,

and for c ̸= 0,
Xn/Yn → X/c in distribution.

See e.g. [C], 20.6. Similarly: if random variables Xi tend to constant limits
ci, then any rational function r = p/q (a rational function r is a ratio of poly-
nomials p, q) of the Xi tends in distribution to the same rational function of
the ci. In particular, this holds for polynomials, e.g., powers ([C], 20.6).

The method above is powerful and flexible. It can be used to justify vari-
ous approximations commonly used in Statistics, such as variance-stabilising
transformations (below), and the delta-method (handout).
Empiricals; The Glivenko-Cantelli theorem

The first thing to note about Parametric Statistics is that the paramet-
ric model we choose will only ever be approximately right at best. We recall
Box’s Dictum (the English statistician George E. P. BOX (1919 –)): all mod-
els are wrong – some models are useful. For example: much of Statistics uses
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a normal model in one form or other. But no real population will ever be
exactly normal. And even if it were, when we sampled from it, we would
destroy normality, e.g. by the need to round data to record it; rounded data
is necessarily rational, but a normal distribution takes irrational values a.s.

So we avoid choosing a parametric model, and ask what can be done with-
out it. We sample from an unknown population distribution F . One impor-
tant tool is the empirical (distribution function) Fn of the sample X1, . . . , Xn.
This is the (random!) probability distribution with mass 1/n at each of the
data points Xi. Writing δc for the Dirac distribution at c – the probability
measure with mass 1 at c, or distribution function of the constant c –

Fn :=
1

n

n∑
1

δXi
.

The next result is sometimes called the Fundamental Theorem of Statistics.
It says that, in the limit, we can recover the population distribution from
the sample: the sample determines the population in the limit. It is due to
V. I. GLIVENKO (1897-1940) and F. P. CANTELLI (1906-1985), both in
1933, and is a uniform version of Kolmogorov’s Strong Law of Large Num-
bers (SLLN, or just LLN), also of 1933.

Theorem (Glivenko-Cantelli Theorem, 1933).

sup
x

|Fn(x)− F (x)| → 0 (n → ∞) a.s.

Proof. Think of obtaining a value ≤ x as Bernoulli trials, with parameter (=
success probability) p := P (X ≤ x) = F (x). So by SLLN, for each fixed x,

Fn(x) → F (X) a.s.,

as Fn(x) is the proportion of successes. Now fix a finite partition −∞ =
x1 < x2 < . . . < xm = +∞. By monotonicity of F and Fn,

sup
x

|Fn(x)− F (x)| ≤ max
k

|Fn(xk)− F (xk)|+max
k

|F (xk+1 − F (xk)|.

Letting n → ∞ and refining the partition indefinitely, we get

lim supn sup
x

|Fn(x)− F (x)| ≤ sup
x

∆F (x) a.s.,

where ∆F (x) denotes the jump of F (if any – there are at most countably
many jumps!) at x. This proves the result when F is continuous.
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