pfsl15.tex Lecture 15. 13.11.2013

Taking the trace,

$$\begin{split} n &= \sum n_i + \sum_{i < j} trace(P_i P_j) = n + \sum_{i < j} trace(P_i P_j) :\\ &\sum_{i < j} trace(P_i P_j) = 0. \end{split}$$

Now

$$trace(P_iP_j) = trace(P_i^2P_j^2) \quad (P_i, P_j \text{ projections})$$

= $trace((P_jP_i).(P_iP_j)) \quad (trace(AB) = trace(BA))$
= $trace((P_iP_j)^T.(P_iP_j)) \quad ((AB)^T = B^TA^T; P_i, P_j \text{ symmetric})$
 $\geq 0,$

since for a matrix ${\cal M}$

$$trace(M^{T}M) = \sum_{i} (M^{T}M)_{ii}$$
$$= \sum_{i} \sum_{j} (M^{T})_{ij} (M)_{ji}$$
$$= \sum_{i} \sum_{j} m_{ij}^{2}$$
$$\geq 0.$$

So we have a sum of non-negative terms being zero. So each term must be zero. That is, the square of each element of P_iP_j must be zero. So each element of P_iP_j is zero, so matrix P_iP_j is zero:

$$P_i P_j = 0 \qquad (i \neq j).$$

This is the condition that the *linear forms* P_1x, \ldots, P_kx be independent (below). Since the P_ix are independent, so are the $(P_ix)^T(P_ix) = x^T P_i^T P_ix$, i.e. $x^T P_i x$ as P_i is symmetric and idempotent. That is, the *quadratic forms* $x^T P_1 x, \ldots, x^T P_k \vec{x}$ are also independent.

We now have

$$x^T x = x^T P_1 x + \ldots + x^T P_k x.$$

The left is $\sigma^2 \chi^2(n)$; the *i*th term on the right is $\sigma^2 \chi^2(n_i)$.

We summarise our conclusions.

Theorem (Chi-Square Decomposition Theorem). If

$$I = P_1 + \ldots + P_k$$

with each P_i a symmetric projection matrix with rank n_i , then (i) the ranks sum:

$$n=n_1+\ldots+n_k;$$

(ii) each quadratic form $Q_i := x^T P_i x$ is chi-squared:

$$Q_i \sim \sigma^2 \chi^2(n_i);$$

(iii) the Q_i are mutually independent.

This fundamental result gives all the distribution theory commonly needed for the Linear Model (for which see e.g. [BF]). In particular, since Fdistributions are defined in terms of distributions of independent chi-squares, it explains why we constantly encounter F-statistics, and why all the tests of hypotheses that we encounter will be F-tests. This is so throughout the Linear Model – Multiple Regression, as here, Analysis of Variance, Analysis of Covariance and more advanced topics.

Note. The result above generalises beyond our context of projections. With the projections P_i replaced by symmetric matrices A_i of rank n_i with sum I, the corresponding result (Cochran's Theorem, 1934, also known as the Fisher-Cochran theorem) is that (i), (ii) and (iii) are *equivalent*. The proof is harder (one needs to work with *quadratic* forms, where we were able to work with *linear* forms). For monograph treatments, see e.g. Rao [R], sections 1c.1 and 3b.4 and Kendall & Stuart [KS1], sections 15.16 - 15.21.

3. The multivariate normal (Gaussian) distribution

In *n* dimensions, for a random *n*-vector $\mathbf{X} = (X_1, \dots, X_n)^T$, one needs

(i) a mean vector $\mu = (\mu_1, \dots, \mu_n)^T$ with $\mu_i = EX_i, \ \mu = E[X];$

(ii) a covariance matrix $\Sigma = (\sigma_{ij})$, with $\sigma_{ij} = cov(X_i, X_j)$: $\Sigma = cov(X)$.

First, note how mean vectors and covariance matrices transform under linear changes of variable:

Proposition. If Y = AX + b, with Y, b m-vectors, A an $m \times n$ matrix and X an n-vector, (i) the mean vectors are related by $E[Y] = AE[X] + b = A\mu + b$; (ii) the covariance matrices are related by $\Sigma_Y = A\Sigma_X A^T$.

Proof. (i) This is just linearity of the expectation operator $E: Y_i = \sum_j a_{ij} X_j + b_i$, so

$$EY_i = \sum_j a_{ij} EX_j + b_i = \sum_j a_{ij} \mu_j + b_i,$$

for each *i*. In vector notation, this is $\mu_{\mathbf{Y}} = A\mu + \beta$.

(ii)
$$Y_i - EY_i = \sum_k a_{ik} (X_k - EX_k) = \sum_k a_{ik} (X_k - \mu_k)$$
, so

 $cov(Y_i, Y_j) = E[\sum_r a_{ir}(X_r - \mu_r) \sum_s a_{js}(X_s - \mu_s)] = \sum_{rs} a_{ir}a_{js}E[(X_r - \mu_r)(X_s - \mu_s)]$ $= \sum_{rs} a_{ir}a_{js}\sigma_{rs} = (A\Sigma A^T)_{ij},$

identifying the elements of the matrix product $A\Sigma A^T$. //

Corollary. Covariance matrices Σ are non-negative definite.

Proof. Let a be any $n \times 1$ matrix (row-vector of length n); then Y := aXis a scalar. So $Y = Y^T = Xa^T$. Taking $a = A^T, b = 0$ above, Y has variance $[= 1 \times 1$ covariance matrix] $a^T \Sigma a$. But variances are non-negative. So $a^T \Sigma a \ge 0$ for all n-vectors a. This says that Σ is non-negative definite. //

We turn now to a technical result, which is important in reducing n-dimensional problems to one-dimensional ones.

Theorem (Cramér-Wold device). The distribution of a random *n*-vector X is completely determined by the set of all one-dimensional distributions of linear combinations $t^T X = \sum_i t_i X_i$, where t ranges over all fixed *n*-vectors.

Proof. $Y := t^T X$ has CF

$$\phi_Y(s) := E[\exp\{isY\}] = E[\exp\{ist^T X\}].$$

If we know the distribution of each Y, we know its CF $\phi_Y(s)$. In particular, taking s = 1, we know $E[\exp\{it^T X\}]$. But this is the CF of $X = (X_1, \dots, X_n)^T$ evaluated at $t = (t_1, \dots, t_n)^T$. But this determines the distribution of X. //

The Cramér-Wold device suggests a way to *define* the multivariate normal distribution. The definition below seems indirect, but it has the advantage

of handling the full-rank and singular cases together ($\rho = \pm 1$ as well as $-1 < \rho < 1$ for the bivariate case).

Definition. An *n*-vector X has an *n*-variate normal (or Gaussian) distribution iff $a^T X$ is univariate normal for all constant *n*-vectors a.

Proposition. (i) Any linear transformation of a multinormal *n*-vector is multinormal;

(ii) Any vector of elements from a multinormal *n*-vector is multinormal. In particular, the components are univariate normal.

Proof. (i) If y = AX + c (A an $m \times n$ matrix, c an m-vector) is an m-vector, and b is any m-vector,

$$b^{T}Y = b^{T}(AX + c) = (b^{T}A)X + b^{T}c.$$

If $a = A^T b$ (an *m*-vector), $a^T X = b^T A X$ is univariate normal as X is multinormal. Adding the constant $b^T c$, $b^T Y$ is univariate normal. This holds for all *b*, so *Y* is *m*-variate normal.

(ii) Take a suitable matrix A of 1s and 0s to choose the required sub-vector. //

Theorem. If X is *n*-variate normal with mean μ and covariance matrix Σ , its CF is

$$\phi(t) := E[\exp\{it^T X\}] = \exp\{it^T \mu - \frac{1}{2}t^T \Sigma t\}$$

Proof. By the Proposition, $Y := t^T X$ has mean $t^T \mu$ and variance $t^T \Sigma t$. By definition of multinormality, $Y = t^T X$ is univariate normal. So Y is $N(t^T \mu, t^T \Sigma t)$. So Y has CF

$$\phi_Y(s) := E[\exp\{isY\}] = \exp\{ist^T\mu - \frac{1}{2}t^T\Sigma t\}.$$

But $E[(e^{isY})] = E[\exp\{ist^TX\}]$, so taking s = 1 (as in the proof of the Cramér-Wold device),

$$E[\exp\{it^T X\} = \exp\{it^T \mu - \frac{1}{2}t^T \Sigma t\},\$$

giving the CF of X as required. //