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Lecture 17. 14.11.2013 (half-hour: Problems)
V. STOCHASTIC PROCESSES
1. Filtrations; Finite-dimensional Distributions

For a random variable X, we call the σ-field generated by the inverse
images (events) X−1(B) = {ω : X(ω ∈ B} as B varies over Borel sets B,
the σ-field generated by X, written σ(X). Equivalently, σ(X) is the σ-field
generated by the events {X ∈ I} as I ranges over the intervals, or by the
events {X ≤ x} as x varies. We quote
Doob’s Lemma (see e.g. SP, L9). For two random variables X, Y , σ(X) ⊂
σ(Y ) iff X = f(Y ) for some measurable function f .

This gives us the right way to think about the (at first sight rather ab-
stract) concept of a σ-field σ(X): it represents the information contained in
X. For, when we apply a function f , we in general lose information. There
is no loss of information iff the function f is injective (one-to-one), i.e. the
inverse function f−1 exists, so we can recover all previous information by
applying f−1.
( Example: f(x) := x2: this is injective on (0,∞), but not on (−∞,∞):
when we take square roots, we introduce a sign ambiguity.

A stochastic process (SP) is a mathematical model of a random phe-
nomenon unfolding with time. So for each t we have a random variable, Xt,
and we have our current information, represented by a σ-field, Ft, say. Bear
in mind the arrow of time! We make the assumption that as time progresses,
new information arrives, and no information is lost. (Of course, this is an
idealisation! In real life, information is lost, by forgetting, and humanity
finds itself endlessly having to re-invent the wheel, as it were, but we ignore
this here for simplicity.) The set of these Ft, which increase with time t as
above, models our information flow. Following P.-A. MEYER (1934-2003),
we call

{Ft}t≥0

a filtration. Adding a probability space, we obtain a filtered probability space

(Ω, {Ft},F ,P).

We assume Meyer’s usual conditions (conditions habituelles):
a. completeness: each Ft contains all P -null sets of F ;
b. the filtration is right-continuous, i.e. Ft = Ft+ := ∩s>tFs.

The alternative (and nowadays preferred) term for a filtered probability
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space is a stochastic basis, so called because it provides us with the basis on
which to define a stochastic process – to which we now turn.
Definition. A stochastic process X = (X(t))t≥0 is a family of random vari-
ables defined on a stochastic basis. Call X adapted if X(t) ∈ Ft (i.e. X(t) is
Ft-measurable) for each t: thus X(t) is known when Ft is known, at time t.

If {t1, · · · , tn} is a finite set of time points in [0,∞), (X(t1), . . . , X(tn)) is
a random n-vector, with a distribution, µ(t1, . . . , tn) say. The class of all such
distributions as {t1, . . . , tn} ranges over all finite subsets of [0,∞) is called
the class of all finite-dimensional distributions of X. These satisfy certain
obvious consistency conditions:
DK1. deletion of one point ti can be obtained by ‘integrating out the un-
wanted variable’, as usual when passing from joint to marginal distributions;
DK2. permutation of the times ti permutes the arguments of the measure
µ(t1, . . . , tn) on Rn in the same way.
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this
is the content of the Daniell-Kolmogorov theorem). This classical result (due
to P.J. DANIELL (1889-1946) in 1918 and Kolmogorov in 1933) is the basic
existence theorem for stochastic processes. For the proof, see e.g. [K].

Important though it is as a general existence result, however, the Daniell-
Kolmogorov theorem does not take us very far. It gives an SP X as a ran-
dom function on [0,∞), i.e. a random variable on R[0,∞). This is a vast and
unwieldy space. We want to work on much smaller and more manageable
spaces, of functions satisfying regularity conditions, such as continuity: we
want to be able to realize X = (X(t, ω))t≥0 as a random continuous function,
i.e. a member of C[0,∞). Such a process X is called path-continuous (since
the map t → X(t, ω) is called the sample path, or simply path, given by ω)
– or more briefly, continuous. This is possible for the extremely important
case of Brownian motion, for example (VI.1). Sometimes we need to allow
X(t, ω) to have jumps. It is then customary, and convenient, to require X(t)
to be right-continuous with left limits (RCLL), or càdlàg (continu à droite,
limite à gauche) – i.e. to have X in the space D[0,∞) of all such functions
(the Skorohod space). This is the case, for instance, for the Poisson process
and its relatives (Lévy processes – Ch. VI).

General results on realisability – whether or not it is possible to realize,
or obtain, a process so as to have its paths in a particular function space –
are known, but for us it is usually better to construct the processes we need
directly on the function space on which they naturally live.
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