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The proof is not examinable, and is on the handout (cf. [BK], 5.3.1; SP
L20-22). It gives the Paley-Wiener-Zygmund (PWZ) construction of 1933,
and is a streamlined version of the classical one due to Lévy in his book of
1948 and Cieselski in 1961. It formalises in the modern language of wavelets
Lévy’s broken-line construction.
2. Poisson process; compound Poisson processes
Exponential Distribution

A random variable T is said to have an exponential distribution with rate
λ, or T ∼ E(λ), if

P (T ≤ t) = 1− e−λt for all t ≥ 0.

Recall E(T ) = 1/λ and var(T ) = 1/λ2. Further important properties are:
(i) Exponentially distributed random variables possess the ‘lack of memory’
property: P (T > s+ t|T > t) = P (T > s) (below).
(ii) Let T1, T2, . . . Tn be independent exponentially distributed random vari-
ables with parameters λ1, λ2, . . . , λn resp. Then min{T1, T2, . . . , Tn} is expo-
nentially distributed with rate λ1 + λ2 + . . .+ λn.
(iii) Let T1, T2, . . . Tn be independent exponentially distributed random vari-
ables with parameter λ. Then Gn = T1 + T2 + . . . + Tn has a Gamma(n, λ)
distribution. That is, its density is

P (Gn = t) = λe−λt(λt)n−1/(n− 1)! for t ≥ 0.

The Poisson Process
Definition. Let t1, t2, . . . tn be independent exponential E(λ) random vari-
ables, Tn := t1,+ . . .+ tn for n ≥ 1, T0 = 0, N(s) := max{n : Tn ≤ s}.
Interpretation: Think of ti as the time between arrivals of events, then Tn is
the arrival time of the nth event and N(s) the number of arrivals by time
s. Then N(s) has a Poisson distribution with mean λs. The Poisson process
can also be characterised via

Theorem. If {N(s), s ≥ 0} is a Poisson process, then
(i) N(0) = 0,
(ii) N(t+ s)−N(s) is Poisson P (λt), and
(iii) N(t) has independent increments.
Conversely, if (i),(ii) and (iii) hold, then {N(s), s ≥ 0} is a Poisson process.
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The above characterization can be used to extend the definition of the
Poisson process to include time-dependent intensities. We say that {N(s), s ≥
0} is a Poisson process with rate λ(r) if
(i) N(0) = 0,
(ii) N(t+ s)−N(s) is Poisson with mean

∫ t

s
λ(r)dr, and

(iii) N(t) has independent increments.

Compound Poisson Processes
We now associate i.i.d. random variables Yi with each arrival and consider

S(t) = Y1 + . . .+ YN(t), S(t) = 0 if N(t) = 0.

Theorem. Let (Yi) be i.i.d. and N be an independent nonnegative integer
random variable, and S as above.
(i) If E(N) < ∞, then E(S) = EX(N).E(Y1).
(ii) If E(N2) < ∞, then var(S) = E(N).var(Y1) + var(N)(E(Y1))

2.
(iii) If N = N(t) is Poisson(λt), then var(S) = tλ(E(Y1))

2.

A typical application in the insurance context is a Poisson model of claim
arrival with random claim sizes.
Renewal Processes

Suppose we use components – light-bulbs, say – whose lifetimesX1, X2, . . .
are independent, all with law F on (0,∞. The first component is installed
new, used until failure, then replaced, and we continue in this way. Write

Sn :=
n∑
1

Xi, Nt := max{k : Sk < t}.

Then N = (Nt : t ≥ 0) is called the renewal process generated by F ; it is a
counting process, counting the number of failures seen by time t.

The law F has the lack-of-memory property iff the components show no
aging – that is, if a component still in use behaves as if new. The condition
for this is

P (X > s+ t|X > s) = P (X > t) (s, t > 0),

or
P (X > s+ t) = P (X > s)P (X > t).

Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0).
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Obvious solutions are

F (t) = e−λt, F (t) = 1− e−λt

for some λ > 0 – the exponential law E(λ). Now

f(s+ t) = f(s)f(t) (s, t ≥ 0)

is a ‘functional equation’ – the Cauchy functional equation – and we quote
that these are the only solutions, subject to minimal regularity (such as one-
sided boundedness, as here – even on an interval of arbitrarily small length!).

So the exponential laws E(λ) are characterized by the lack-of-memory
property. Also, the lack-of-memory property corresponds in the renewal con-
text to the Markov property. The renewal process generated by E(λ) is
called the Poisson (point) process with rate λ, Ppp(λ). So: among renewal
processes, the only Markov processes are the Poisson processes. We meet
Lévy processes below: among renewal processes, the only Lévy processes are
the Poisson processes.

It is the lack of memory property of the exponential distribution that
(since the inter-arrival times of the Poisson process are exponentially dis-
tributed) makes the Poisson process the basic model for events occurring
‘out of the blue’. Typical examples are accidents, insurance claims, hospi-
tal admissions, earthquakes, volcanic eruptions etc. So it is not surprising
that Poisson processes and their extensions (compound Poisson processes)
dominate the theory of the actuarial and insurance professions, as well as
geophysics, etc.

3. Lévy Processes; Lévy-Itô decomposition
Lévy Processes

Suppose we have a process X = (Xt : t ≥ 0) that has stationary indepen-
dent increments. Such a process is called a Lévy process, in honour of their
creator, the great French probabilist Paul Lévy. Then for each n = 1, 2, . . .,

Xt = Xt/n + (X2t/n −Xt/n) + . . .+ (Xt −X(n−1)t/n)

displays Xt as the sum of n independent (by independent increments), identi-
cally distributed (by stationary increments) random variables. Consequently,
Xt is infinitely divisible, so its CF is given by the Lévy-Khintchine formula.
Prime example: the Wiener process [= Brownian motion] is a Lévy process.
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Poisson Processes.
The increment Nt+u − Nu (t, u ≥ 0) of a Poisson process is the number

of failures in (u, t + u] (in the language of renewal theory). By the lack-
of-memory property of the exponential, this is independent of the failures in
[0, u], so the increments ofN are independent. It is also identically distributed
to the number of failures in [0, t], so the increments of N are stationary. That
is, N has stationary independent increments, so is a Lévy process: Poisson
processes are Lévy processes.

We need an important property: two Poisson processes (on the same fil-
tration) are independent iff they never jump together (a.s.).

The Poisson count in an interval of length t is Poisson P (λt) (where the
rate λ is the parameter in the exponential E(λ) of the renewal-theory view-
point), and the Poisson counts of disjoint intervals are independent. This
extends from intervals to Borel sets:
(i) For B Borel, the Poisson count in B is Poisson P (λ|B|), with |.| Lebesgue
measure; (ii) Poisson counts over disjoint Borel sets are independent.
Poisson (Random) Measures.

If ν is a finite measure, call a random measure ϕ Poisson with intensity
(or characteristic) measure ν if for each Borel set B, ϕ(B) has a Poisson dis-
tribution with parameter ν(B), and for B1, . . . , Bn disjoint, ϕ(B1), . . . , ϕ(Bn)
are independent. One can extend to σ-finite measures ν: if (En) are disjoint
with union R and each ν(En) < ∞, construct ϕn from ν restricted to En and
write ϕ for

∑
ϕn.

Poisson Point Processes.
With ν as above a (σ-finite) measure on R, consider the product measure

µ = ν × dt on R × [0,∞), and a Poisson measure ϕ on it with intensity µ.
Then ϕ has the form

ϕ =
∑
t≥0

δ(e(t),t),

where the sum is countable. Thus ϕ is the sum of Dirac measures over ‘Poisson
points’ e(t) occurring at Poisson times t. Call e = (e(t) : t ≥ 0) a Poisson
point process with characteristic measure ν,

e = Ppp(ν).

For each Borel set B, define the counting process of B:

N(t, B) := ϕ(B × [0, t]) = card{s ≤ t : e(s) ∈ B}.
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