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This counts the Poisson points in B – and is a Poisson process with rate
(parameter) ν(B). All this reverses: starting with an e = (e(t) : t ≥ 0)
whose counting processes over Borel sets B are Poisson P (ν(B)), then – as
no point can contribute to more than one count over disjoint sets – disjoint
counting processes never jump together, so are independent by above, and
ϕ :=

∑
t≥0 δ(e(t),t) is a Poisson measure with intensity µ = ν × dt.

Lévy Processes; Lévy-Khintchine Formula; Lévy-Itô decomposition.
We can now sketch the close link between the general Lévy process on

the one hand and the general infinitely-divisible law given by the Lévy-
Khintchine formula (LK) on the other.

First, if X = (Xt) is Lévy, the law of each X1 is infinitely divisible, so

E exp{iuX1} = exp{−Ψ(u)} (u ∈ R)

with Ψ a Lévy exponent as in (LK). Similarly,

E exp{iuXt} = exp{−tΨ(u)} (u ∈ R),

for rational t at first and general t by approximation and càdlàg paths. Then
Ψ is called the Lévy exponent, or characteristic exponent, of the Lévy process
X. Conversely, given a Lévy exponent Ψ(u) as in (LK), construct a Brownian
motion, and an independent Ppp ∆ = (∆t : t ≥ 0) with characteristic
measure µ, the Lévy measure in (LK). Then X1(t) := at+ σBt has CF

E exp{iuX1(t)} = exp{−tΨ1(t)} = exp

{
−t(iau+ 1

2
σ2u2)

}
,

giving the non-integral terms in (LK). For the ‘large’ jumps of ∆, write

∆
(2)
t := ∆t if |∆t| ≥ 1, 0 else.

Then ∆(2) is a Poisson point process with characteristic measure µ(2)(dx) :=
I(|x| ≥ 1)µ(dx). Since

∫
min(1, |x|2)µ(dx) <∞, µ(2) has finite mass, so ∆(2),

a Ppp(µ(2)), is discrete and its counting process

X
(2)
t :=

∑
s≤t

∆(2)
s (t ≥ 0)
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is compound Poisson, with Lévy exponent

Ψ(2)(u) =

∫
(1− eiux)I(|x| ≥ 1)µ(dx) =

∫
(1− eiux)µ(2)(dx).

There remain the ‘small jumps’,

∆
(3)
t := ∆t if |∆t| < 1, 0 else,

a Ppp(µ(3)), where µ(3)(dx) = I(|x| < 1)µ(dx), and independent of ∆(2)

because ∆(2), ∆(3) are Poisson point processes that never jump together. For
each ϵ > 0, the ‘compensated sum of jumps’

X
(ϵ,3)
t :=

∑
s≤t

I(ϵ < |∆s| < 1)∆s − t

∫
xI(ϵ < |x| < 1)µ(dx) (t ≥ 0)

is a Lévy process with Lévy exponent

Ψ(ϵ,3)(u) =

∫
(1− eiux + iux)I(ϵ < |x| < 1)µ(dx).

Use of a suitable maximal inequality allows passage to the limit ϵ ↓ 0 (going

from finite to possibly countably infinite sums of jumps): X
(ϵ,3)
t → X

(3)
t , a

Lévy process with Lévy exponent

Ψ(3)(u) =

∫
(1− eiux + iux)I(|x| < 1)µ(dx),

independent of X(2) and with càdlàg paths. Combining:

Theorem (Lévy-Itô decomposition). For a Lévy exponent

Ψ(u) = iau+
1

2
σ2u2 +

∫
(1− eiux + iuxI(|x| < 1)µ(dx),

the construction above yields a Lévy process

X = X(1) +X(2) +X(3)

with Lévy exponent Ψ = Ψ(1) + Ψ(2) + Ψ(3). Here the X(i) are independent
Lévy processes, with Lévy exponents Ψ(i); X(1) is Gaussian, X(2) is a com-
pound Poisson process with jumps of modulus ≥ 1; X(3) is a compensated
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sum of jumps of modulus < 1. The jump process ∆X = (∆Xt : t ≥ 0) is a
Ppp(µ), and similarly ∆X(i) is a Ppp(µ(i)) for i = 2, 3.

Stable processes.
A stable process has (to within location and scale) a Lévy exponent in-

volving two parameters, α ∈ (0, 2], called the index, and β ∈ [−1, 1], called
the skewness parameter:

Ψ(u) = |u|α(1−iβ(sgn u) tan(1
2
πα)) (α ̸= 1), |u|(1+iβ(sgn u) 2

π
log |u|) (α = 1)

(for α = 2, β drops out as tan π = 0, so Ψ(u) = u2, giving the normal
(Gaussian) distribution). The case α = 1 is the Cauchy case; the asymmetric
Cauchy case α = 1, β ̸= 0 is awkward, and we do not consider it further.

The Lévy measure µ in the stable case is absolutely continuous, with
density ν, µ(dx) = ν(x)dx, where

ν(x) = c+/x
1+α (x > 0), c−/|x|1+α (x < 0) (c± ≥ 0, c+ + c− > 0).

Here
β = (c= − c−)/(c+ + c−).

The calculations are simpler in the symmetric case, c+ = c−,= c say. Then

Ψ′(u) = 2cuα−1I (u > 0), I :=

∫ ∞

0

v−α sin vdv.

So Ψ(u) = 2cIuα/α for u > 0, and similarly for u < 0: Ψ(u) = |u|α.2cI/a
But (see e.g. M2PM3 L30 on my website: there t = 1 − α ∈ (0, 1),
but we can extend by analytic continuation to −1 < t < 1, α ∈ (0, 2))
I = Γ(1−α) cos(1

2
πα) (here α ̸= 1: Γ(z) has a pole at z = 0; for the Cauchy

case α = 1 see above). Choose c := σ/(2I); then Ψ(u) = |u|α.
Example. The symmetric stable law with α = 3/2 is called the Holtsmark
distribution, proposed by the Danish physicist J. Holtsmark in 1919 as a
model for the distribution of galaxies in space (here 3/2 comes from the
3 dimensions of space and the 2 in Newton’s Inverse Square Law of Grav-
ity). Since Γ(1

2
) =

√
π and Γ(1 + x) = xΓ(x), Γ(1 − α) cos(1

2
πα) here is∫∞

0
v3/2 sin vdv = Γ(−1

2
) cos(3π/4) = (−2

√
π).(−1/

√
2) =

√
2π.

Subordinators.
We resort to complex numbers in the CF ϕ(u) = E(eiuX) because this al-

ways exists – for all real u – unlike the ostensibly simpler moment-generating
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function (MGF) M(u) := E(euX), which may well diverge for some real
u. However, if the random variable X is non-negative, then for s ≥ 0 the
Laplace-Stieltjes transform (LST)

ψ(s) := E[e−sX ] ≤ E(1) = 1

always exists. For X ≥ 0 we have both the CF and the LST to hand, but
the LST is usually simpler to handle. We can pass from CF to LST formally
by taking u = is, and this can be justified by analytic continuation.

Some Lévy processes X have increasing (i.e. non-decreasing) sample
paths; these are called subordinators. From the construction above, sub-
ordinators can have no negative jumps, so µ has support in (0,∞) and no
mass on (−∞, 0). Because increasing functions have FV, one must have
paths of (locally) finite variation, the condition for which can be shown to be∫

min(1, |x|)µ(dx) <∞.

Thus the Lévy exponent must be of the form

Ψ(u) = −idu+
∫ ∞

0

(1− eiux)µ(dx),

with d ≥ 0. It is more convenient to use the Laplace exponent Φ(s) = Ψ(is):

E (exp{−sXt}) = exp{−tΦ(s)} (s ≥ 0), Φ(s) = ds+

∫ ∞

0

(1−e−sx)µ(dx).

Example. The Stable Subordinator.
Here d = 0,Φ(s) = sα, (0 < α < 1),

µ(dx) = dx/(Γ(1− α)xα−1)

(in one normalization, the one convenient here). The special case α = 1/2
is particularly important: this arises as the first-passage time of Brownian
motion over positive levels, and gives rise to the Lévy density (see Problems).
Classification.
IV (Infinite Variation). The sample paths have infinite variation on finite
time-intervals, a.s. This occurs iff

σ > 0 or

∫
min(1, |x|)µ(dx) = ∞.
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