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Proof. For n = 2:

p
(2)
ij = P (i → j in 2 steps)

=
∑

k
P (i → k → j)

=
∑

k
P (i → k on first step).P (k → j on second step|i → k on first step)

=
∑

k
P (i → k).P (k → j),

using the Markov property in the second term. This says that

p
(2)
ij =

∑
k
pikpkj,

the (i, j) element of the second matrix power P 2.
For the general case we can use induction on the power n. Alternatively,

we can argue as follows. The probability of going from i to j in n steps is,
summing over all possible paths from i to j in n steps,

p
(n)
ij =

∑
k1,...,kn−1

P (i → k1).P (k1 → k2|i → k1).P (k2 → k3|i → k1 → k2)

. . . P (kn−1 → j|i → k1 → . . . → kn−1),

by iterated conditional expectation. Using the Markov property,, the RHS
simplifies to

p
(n)
ij =

∑
k1,...,kn−1

P (i → k1).P (k1 → k2).P (k2 → k3) . . . P (kn−1 → j).

The LHS is the (i, j) element of P (n), while the RHS is the (i, j) element
of the nth matrix power P n of P . Since this holds for all i and j, the two
matrices are equal, as required. //

This result is vital. It shows one of the great advantages of Markov chain
theory – that it is perfectly adapted to the theory of matrices and Linear
Algebra, which is very well developed.
Note. The result is named after Sydney CHAPMAN (1888-1970), an English
applied mathematician (paper of 1928) and Kolmogorov (paper of 1931).
Initial distribution. Suppose that the position at time t = 0 is random, with

pi := P (X0 = i).
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Form the row-vector
p := (p0, p1, . . .).

Then

P (Xn = j) =
∑

i
P (Xn = j & X0 = i)

=
∑

i
P (X0 = i)P (Xn = j|X0 = i)

=
∑

i
pip

(n)
ij

= (pP (n))j.

That is, the row-vector pP (n) = pP n gives the distribution of the chain at
time n.
Note. 1. Because it is natural to specify where we are at one time (at i with
probability pi), and then where we go to next (go from i to j with probability
pij), it is row-vectors, rather than column-vectors, that are more useful in
Markov chain theory.

This is worth bearing in mind, as in Linear Algebra the convention is often
adopted that vectors are column-vectors (by default – i.e., unless otherwise
specified), in which case one needs to use a transpose sign (AT denotes the
transpose of a matrix A) to obtain a row-vector. This is actually unnecessary
here: vectors, row or column, are special cases of matrices, and it is better
not to clutter things up with unnecessary transpose signs.
2. Precisely for this reason, one sometimes sees pji used for what we call pij,
as in e.g. [M], Ch. 3: Markov processes.
Beware of this if using this otherwise excellent book!
Stationary distribution.

Suppose that the initial distribution π satisfies the linear equations

πP = π. (SD)

Then by above, its distribution after one step is πP = π. Similarly, its
distribution after n steps is

πP (n) = πP n = πP.P n−1 = πP n−1 = πP n−2 = . . . = πP = π :

the distribution stays the same for all time. Such a distribution is called sta-
tionary, or invariant, or an equilibrium distribution. We shall return to such
distributions later, when we shall see that they are (under broad conditions)
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limiting distributions, to which the chain settles down as time passes.
Observe that the linear equations (SD) are homogeneous: if π is a so-

lution, then so is cπ for any scalar c. We are only interested in solutions
π = (πj) which are probability distributions, i.e. πj ≥ 0,

∑
jπj = 1. There

may well be solutions but not solutions of this type; we shall meet examples
of this below.
Examples.
1. Two states. This is the simplest possible case:

P =

(
1− α α
β 1− β

)
.

There are two common interpretations:
(i) Motion on the line with constant speed,

α = P (change direction to left|going right), β = P (change direction to right|going left).

(ii) Rainfall. This chain has been used to model rainfall data, with days in
Tel Aviv being classified as dry (if no rain falls) and wet otherwise. It gives
a reasonable fit to the Tel Aviv rainfall data. For details, see [CM], 3.2.
2. Gambler’s ruin: Random walk with absorbing barriers on a finite set. Here

P =



1 0 0 . . . 0 0 0
q 0 p . . . 0 0 0
0 q 0 p . . . 0 0
. . . . . . . . . . . .

. . . . . . . . . . . . q 0 p

. . . . . . . . . . . . 0 0 1

 .

Random walk is given by an infinite matrix on the integers, with the tri-
diagonal structure above (0 diagonal, p in the super-diagonal, q in the sub-
diagonal throughout).
3. Gambling for fun: Random walk with reflecting barriers on a finite set.
If our gamblers are playing for fun rather than for money, they may decide
that to avoid the game stopping when a player is ruined, his last stake is
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returned to him so that he can continue playing. The matrix is replaced by

P =



q p 0 . . . 0 0 0
q 0 p . . . 0 0 0
0 q 0 p . . . 0 0
. . . . . . . . . . . .

. . . . . . . . . . . . q 0 p

. . . . . . . . . . . . 0 q p

 .

4. Cyclic random walk. Suppose the states represent positions on a circle:

P =


q0 q1 . . . . . . qa−1

qa−1 q0 . . . . . . qa−2

. . . . . . . . . . . .

q1 q2 . . . qa−1 q0

 .

5. Ehrenfest model of diffusion: Ehrenfest urn. Suppose that N balls are
distributed between two urns. At each stage, a ball is chosen at random
(each with probability 1/N) and changed to the other urn. The state is the
number of balls in Urn 1. Then

pi,i−1 = i/N, pi,i+1 = 1− i/N, pi,j = 0 otherwise

(the first represents the chance that a ball in Urn 1 is chosen, and changed
to Urn 2, the second that a ball in Urn 2 is chosen, with the complementary
probability, and changed to Urn 1). The matrix is again tri-diagonal:

P =



0 1 0 . . . 0 0 0
1/N 0 1− 1/N . . . 0 0 0
0 2/N 0 1− 2/N . . . 0 0
. . . . . . . . . . . .

. . . . . . . . . . . . 1− 1/N 0 1/N

. . . . . . . . . . . . 0 1 0

 .

The motivation for this model is Statistical Mechanics (Paul EHRENFEST
(1880-1933) and Tatyana Ehrenfest, in 1907, published in 1911). The balls
represent molecules of a gas (so for a physically observable system, will be
present in enormous numbers – recall Avogradro’s number, c. 6.02× 1023, is
the number of gas molecules per standard volume under standard conditions).
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