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Lecture 25. 5.12.2013
Ehrenfest urn (continued). Think of the urns as two equal parts of a symmet-
rical container, A and B. If A has an excess (more than a half) of molecules,
it is more likely to lose molecules to B than gain them, and similarly for B.
The model exhibits a central force, or restoring force, towards equilibrium
(equal numbers in the two halves), but allows departures from equilibrium
by spontaneous fluctuations. We return to the physical interpretation, which
is very important, later.
6. Bernoulli-Laplace model of diffusion (Daniel BERNOULLI (1700-1782) in
1769, Laplace in 1812). This is a more complicated version of the Ehrenfest
model, though it came much earlier. Here there are 2N balls of two colours
– N white balls and N black balls, say, and two containers, each containing
N balls. At each stage, a ball is chosen at random from each container, and
they are interchanged. The state is the number of white balls (say) in the
first container (say):

pi,i−1 = (i/N)2, pi,i = 2N(N−i)/N2, pi,i+1 = (N−i)2/N2, pi,j = 0 otherwise.

Again, the matrix is tri-diagonal.
7. Wright-Fisher model in mathematical genetics. This was introduced by
the American geneticist Sewall G. WRIGHT (1889-1988) in 1931, and the
English statistician and geneticist R. A. (Sir Ronald) Fisher (1890-1962) in
1930. For more on mathematical genetics, see the handout.
8. Motor insurance. Suppose that a motorist has probability p of driving for
a year without making a motor insurance claim (‘success’), and probability
q := 1 − p of claiming (‘failure’). For each claim-free year, he is rewarded
by a reduction in his premium (until he reaches some minimum premium);
for each claim, he is penalized by going back to the starting premium. One
may model this with a transition matrix with p in the super-diagonal and q
in the first column.
9. Social mobility. Markov chains are used by sociologists to study social
mobility between classes.
Non-Markovian phenomena. These are typically much harder, as the past
history of the process is now relevant as well as its present position. One
important example is familiar from physics: hysteresis. With a hysteresis
loop, one needs to know not just what level one is at, but whether one
is going ‘up or down’. Sometimes (as here), one can recover the Markov
property by including such extra information – but at the price of working
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with a more complicated state-space.
2. Classification of states.

We say state Ek (which we may as well abbreviate to k from now on) can

be reached from j – or, is accessible from j, or j leads to k – if p
(n)
jk > 0 – i.e.

there is positive probability of a transition from j to k in n steps for some n.
We then write j → k. If also k → j, we say that j and k inter-communicate,
and write j ↔ k.

Call a set C of states closed if no states outside C are accessible from any
state in C – that is, once the process enters C it stays there. The closure C̄
of any set C of states is the smallest closed set containing it.

A singleton closed set is an absorbing state, or trap (example: the extreme
states 0 and a in the gambler’s ruin problem).

A Markov chain is called irreducible if there is no closed set other than
the set of all states (the motivation for this term will become clearer later
when we have proved the Classification Theorem).
Subchains.

Recall that a matrix Q is stochastic if its elements are non-negative and
its row-sums are 1 (example: the transition probability matrix P = (pij) of
a Markov chain)).

If we have a closed set C of states, let us for convenience label states in
C first, then states outside C. Then the transition matrix P has the form

P =

(
Q 0
U V

)
,

for some U and V . Here Q governs transitions from C to C, the 0 reflects
the impossibility of leaving C, U governs transitions from outside C to C, V
from outside C to outside C. Note that P n has the form

P n =

(
Qn 0
U (n) V (n)

)
,

where P n, Qn are matrix powers but U (n), V (n) are not in general.
We can now imagine deleting all states outside C from the state space.

We are left with a Markov chain, with state space C and transition matrix
Q. It is called the Markov chain restricted to C, or the sub-chain on C.
Periodicity.

A state j has period t > 1 if p
(n)
jj = 0 unless n is a multiple of t, and t is

the largest such integer. Otherwise, we call j aperiodic (‘period t = 1’).
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Examples. 1. In simple random walk, all states are periodic with period 2.
Similarly for the Ehrenfest model of diffusion.
2. If we modify our random walk to have positive probabilities of moving
left, right and staying put, all states are now aperiodic.
3. For

P =

 0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

 ,

we find by direct calculation

P 2 =

 1
2

1
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1
4

1
4

1
2

1
4

1
4

1
4

1
2

 .

So all the elements of P n for n ≥ 2 are positive, and so all states are aperiodic
– even though P has zeros on its diagonal.
Persistence and transience.

Call j persistent (or recurrent) if

P (return to j|start at j) = 1

– return to j from j is certain. Then return to j n times is certain for each
n, and

P (return to j i.o.|start at j) = 1.

Call j transient if

fj := P (return to j|start at j) < 1.

Then

P (return to j n times|start at j) = fn
j → 0 (n → ∞),

and
P (return to j i.o|start at j) = 0.

Writing Tj for the first return time to j, state j is persistent iff Tj is non-
defective, transient iff Tj is defective. Just as for random walks, if

un,j := P (at j at time n | start at j), Uj(s) :=
∑∞

n=0
un,js

n,
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then for
Fj(s) := E[stj ] =

∑∞

0
P (Tj = n)sn =

∑∞

0
fn,js

n,

we have the Feller relation (Problems 9 Q1)

Uj(s) = 1/(1− Fj(s)).

So Uj(1) < ∞ iff Fj(1) < 1, iff Tj is defective, iff j is transient – that is,∑
nun,j converges iff j is transient, so diverges iff j is persistent.

The Erdös-Feller-Pollard Theorem.
If j is periodic with period t, un = 0 if n is not a multiple of t. Write

µj := E[Tj] = F ′
j(1)

for the mean return time to j (or mean recurrence time of j). We call state
j null if µj = ∞, positive if µj < ∞.
Examples: In symmetric random walk, all states are null recurrent.

This terminology of null and positive is explained by the next result,
proved by Paul ERDÖS (Hungarian mathematician, 1913-1996), Willy FELLER
(Yugoslav/US mathematician, 1906-1970) and Harry POLLARD (American
mathematician, d. 1985) in 1949.
Theorem (Erdös-Feller-Pollard Theorem). If state j is persistent:
(i) If j is aperiodic,

un,j → 1/µj (n → ∞).

(ii) If j is periodic with period t, un,j = 0 unless n is a multiple of t, and

unt,j → t/µj (n → ∞).

Sketch Proof. (i) By the Feller relation,

(1− s)Uj(s) = (1− s)/(1− Fj(s)).

As s ↑ 1, the RHS tends to 1/F ′
j(1) = 1/µj. The left is (recall u0,j = 0)

(1− s)Uj(s) =
∑

n
un,js

n −
∑

n
un,js

n+1 =
∑

n
(un,j − un−1,j)s

n.

As s ↑ 1, this tends to∑
n
(un,j − un−1,j) = limN→∞

∑N

n=0
(un,j − un−1,j) = limN→∞un,j.

This establishes the result formally in the aperiodic case. A full proof needs
more care. For details (not examinable), see e.g. [GS] 5.2, 5.10 or [F] XIII.11.
The periodic case is similar. //
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