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Let N → ∞:
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πj ≤ 1.

Now
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for each N . Let n → ∞:
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πkpkj.

Let N → ∞:
πj ≥

∑
k

πkpkj. (∗)

Sum over j:
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∑
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πk

∑
j

pkj =
∑
k

πk = s.

So the inequality we got by summing (∗) is an equality (the extreme left
and right are both s). So (∗) must itself be an equality (as inequality would
contradict this). This proves (iii).

That
∑

j πj = 1 follows formally from
∑

j p
n)
ij = 1 and p

(n)
ij → πj (n → ∞)

on interchanging n → ∞ and
∑

j. This follows by dominated convergence –
or see e.g. [GS] 6.4, pp 207-217. //

The distribution π = (πj) is called the limit distribution of the chain. It
is also an invariant distribution, or stationary distribution, in the sense that
if π is the initial or starting distribution, the distribution after one step is
πP , which is also π as π = πP , and similarly after n steps. So:
Cor. If an ergodic chain is started in its invariant or limit distribution π, it
stays in distribution π for all time.
Examples.
1. Gambler’s ruin. There is no limit distribution. The chain is not irre-
ducible. The extreme states 0, a are absorbing; the others are transient.
There are two different invariant distributions: ‘start in 0 and ‘start in a’.
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2. Ehrenfest urn. Again, there is no limit distribution: the chain is periodic
with period 2. but apart from this, the chain comes as close to having a
limit distribution as possible: it has an invariant distribution, the binomial
distribution

π = (πj), πj = 2−d

(
d

j

)
.

Recurrence time.
The mean recurrence time of state j is µj = 1/πj. So here

µ0 = 1/π0 = 1/2−d = 2d.

Now d is of the order of Avogradro’s number (6.02×1023), so 2d is astronom-
ically vast. So π0 is astronomically vast – effectively infinite. This means
that in practice, we will not see the chain return to its starting position if
started at 0 – even though it does so (infinitely often, almost surely).
Rate of convergence.

The distribution at time n is governed by P n by the Chapman-Kolmogorov
theorem. In the periodic case, the d e-values that are dth roots of unity do
not have nth powers that → 0, but in the aperiodic case every e-value other
than the PF e-value 1 does. From the Perron-Frobenius theorem, the rate
of convergence is determined by the spectral gap 1− |λ2|, where as usual we
order the e-values in decreasing modulus:

λ1 = 1 > |λ2| ≥ . . . ≥ . . .

(recall there is only one e-value of modulus 1, the PF e-value 1).
Reversibility.

The chain is reversible if its probabilistic structure is invariant under
time-reversal (i.e., the chain looks the same if run backwards in time). We
quote (Kolmogorov’s theorem) that this is the same as detailed balance (DB:
Ludwig BOLTZMANN (1844-1906) in 1872):

πipij = πjpji for all i, j. (DB)

One can check (DB) here. So the Ehrenfest chain is reversible.
The interpretation of this in Statistical Mechanics is that µ0 is the mean

recurrence time of state 0, when all the 2d gas molecules are in one half of
the container. Although this state is certain to recur, its mean recurrence
time is so vast as to be effectively infinite – which explains why we do not see
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such states recurring in practice! This reconciles the theoretical reversibility
of the model with the irreversible behaviour we observe when gases diffuse,
etc. This was the Ehrenfests’ motivation for their model, in 1912.
Note. Relevant here is the concept of entropy – a measure of disorder. For
details, see Problems and Solutions 9 and 10.
Markov Chain Monte Carlo (MCMC).

The area of Markov chain Monte Carlo (MCMC), for which see e.g.
Häggström [Hag] Ch. 7, 8, originated in physics, but has since become ex-
tremely important in statistics, particularly Bayesian statistics (for which see
e.g. SMF, IV). The idea is to sample, or simulate, from a distribution π. If
this is straightforward, fine (see e.g. IS II for simulation) – but it may not
be. In this case, the method of MCMC is to find a Markov chain X = (Xn)
with π as its limit distribution. Then we can run the chain, knowing that
its distribution for large n will approximate π. How long we have to wait
for the approximation to be good enough for our purposes depends on the
transition matrix P of the chain – and in particular, on its spectral gap.
Note. The two most important developments in Statistics in recent decades
have been MCMC and wavelets.

4. Finite and infinite chains
Finite chains have special and useful properties.

Theorem. For a finite Markov chain, it is impossible for all states to be
transient: a finite chain must contain at least one persistent state.

Proof. If the state-space is {1, . . . , N}, for each i and each n

1 =
N∑
j=1

pij(n). (a)

Let n → ∞: if j is transient, the total expected time in it is finite:
∑

n pij(n) <
∞. So

pij(n) → 0 (n → ∞). (b)

If all states were transient, then letting n → ∞ in (a) and using (b) would give
the contradiction 1 = 0. So not all states in a finite chain can be transient. //

Note. 1. An infinite chain can easily consist of only transient states. A trivial
example is walk to the right on the integers: pi,i+1 = 1, with the other pij 0.
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A non-trivial example is given by Pólya’s theorem: simple symmetric ran-
dom walk on the integer lattice Zd is transient for d ≥ 3 (but recurrent for
d = 1, 2). See e.g. [F], XIV.7, [GS], 13.11 p.560.
2. The sum

∑
n pij(n) is the expected total time spent in state j, starting

from i. With only finitely many states, and infinite total time altogether, at
least one of these sums must thus be infinite.

Theorem. A persistent state j in a finite chain is positive (= non-null).

Proof. If the finite chain has state-space {1, . . . , N}, assume there is a null
state. Let C be the equivalence class containing it. Since C is closed, we can
consider the subchain induced on C. Then

1 =
∑
k∈C

pik(n) (finite sum).

Let n → ∞: each pik(n) → 0, so the sum on the RHS → 0, giving 1 = 0.
This contradiction gives the non-existence of null states in a finite chain. //

The restriction to finite chains is essential here: e.g., simple symmetric
random walk on the integers has all states persistent null.

The limit theorem above is due to Kolmogorov in 1936. The algebraic
treatment we have given is in terms of matrices – and in the case of an infinite
chain, these will be infinite matrices. Dealing with infinite rather than finite
matrices is possible (with care, and under suitable conditions) – but belongs
to Functional Analysis rather than to Linear Algebra. Infinite-dimensional
versions of the Perron-Frobenius theorem exist, such as the Krein-Rutman
theorem for positive operators. But this leads beyond the scope of this course.
Continuous state-space

It turns out that, although the language of matrices is so useful in the
above, one can extend much of the treatment above to situations where the
state space is continuous rather than discrete. It turns out also that it is
this case that is most useful in applications, particularly MCMC. For a full
treatment, see e.g. Meyn & Tweedie [MT]. Much of the theory above extends
to the continuous-state case. Again the transience-recurrence dichotomy is
crucial, but there are now various possible types of recurrence. One of the
most important is Harris recurrence (T. E. HARRIS (1919-2005) in 1956).
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