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Lecture 28. 12.12.2013
5. Continuous time
Renewal theory.

Imagine a public room which is in permanent use, so needs to be perma-
nently lit. At time 0, a new lightbulb is installed. It is used until it fails (at
time T1, say), and then immediately replaced by another of the same kind.
This is used until it fails, after some further time-lapse T2, say, when it is
replaced, etc. The time-axis [0,∞) is thus punctuated by renewal epochs
T1, T1+T2, . . . , T1+ . . .+Tk, . . ., where Tk is the lifetime of the kth lightbulb.
We assume that the Tk are independent, each with distribution function F
(concentrated on (0,∞), so F (0) = 0) and density f . So F is the lifetime
distribution. We often focus instead on its tail, or survival function,

F̄ (x) := 1− F (x), (x > 0).

So, writing X for a typical lifetime,

F (x) =

∫ x

0

f(y)dy = P (X ≤ x), F̄ (x) =

∫ ∞

x

f(y)dy = P (X > x).

Similarly for any component that must be replaced immediately on failure.
We are interested in the residual life left in the current lightbulb. Suppose

it has been in use (without failure, understood) for time x. Of particular
interest is the probability that it will fail within some short further time-
lapse dx:

P (X ∈ (x, x+ dx)|X > x).

This is

P (X ∈ (x, x+ dx))/P (X > x) =

∫ x+dx

x

f(y)dy/F̄ (x) = f(x)dx/F̄ (x),

to first order in dx. It is natural to think of the coefficient of dx on the right
as a rate. It is called the hazard rate, or failure rate, h(x):

h(x) := f(x)/(1− F (x)) = f(x)/F̄ (x) = f(x)/

∫ ∞

x

f(y)dy.

Now −h is the derivative of log(1− F ), from above. So integrating,

1− F (x) = F̄ (x) =

∫ ∞

x

f(y)dy = exp{−
∫ x

0

h(y)dy} (x > 0).
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For lightbulbs etc.: would you prefer the component you are using to be
(a) new (suggesting that it may therefore be expected to last longer), or
(b) used (suggesting that it is a good component – it has demonstrated this
by surviving the test of use)?
Both views are reasonable. There is in fact a whole subject of Reliability
Theory, which uses acronyms such as NBU for ‘new better than used’, etc.
Example. Take the simplest case possible – that of constant hazard rate,

h(x) ≡ λ, F (x) = 1− e−λx, f(x) = λe−λx (x > 0) :

F is the exponential distribution with parameter λ, F = E(λ). It turns out
that this simplest possible case is also by far the most important case!

Because we now have the interpretation of the parameter λ in the expo-
nential distribution E(λ) as a hazard rate, we may (and will) refer to E(λ)
as the exponential distribution with rate λ. This is intimately linked to the
Poisson process with rate, or parameter, λ, Ppp(λ), and the Poisson distri-
bution P (λ).
Exponential distributions and lack of memory.

For our lightbulb, the conditional probability that it is still working at
time s+ t, given that it is working at time s, is

P (T > t+s|T > s) = P (T > t+s&T > s)/P (T > s) = P (T > t+s)/P (T > s).

Suppose now that the bulbs show no ageing – or, to use the alternative
description, have the lack of memory property. Then the situation above is
equivalent to that of a new lightbulb surviving for (at least) time t. That is,
absence of ageing is equivalent to

P (T > t+s)/P (T > s) = P (T > t) : P (T > t+s) = P (T > t).P (T > s) (s, t > 0).

That is, absence of ageing is equivalent to

F̄ (t+ s) = F̄ (t).F̄ (s) (s, t > 0). (∗)

This is the Cauchy functional equation, for which we seek a bounded solution.
The only ones are the obvious ones – the exponential distributions, F = E(λ)
for λ > 0. For, in this case F̄ (x) = e−λx, and (∗) just says that ea+b = ea.eb,
the defining property of the exponential function. Summarizing this:
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Theorem. The only lifetime distributions satisfying the lack of memory
property (∗) are the exponential distributions E(λ).

Note. This lack of memory property of the exponential distributions is the
essence of the Markov property in continuous time. Here the holding time at
a particular state, k say – the length of time we stay there – is exponential
E(λk). The main ingredients of a Markov chain in continuous time are
(i) the jump rates λk,
(ii) the jump law, telling us where we jump to when we jump from state k.
Renewal Theory and the Poisson Process.

If we write X1, X2, . . . for the lifetimes of the first, second, ... lightbulbs
(denoted T1, T2, . . . above), write

Sn := X1 + . . .+Xn

(S0 := 0) for the nth partial sum. Then S = (Sn)
∞
n=0 is a random walk, with

step-length distribution the lifetime distribution F . Now write

Nt, or N(t), := max{k : Sk ≤ t} (t ≥ 0).

Then Nt is the number of failures, or replacements, or renewals, up to time
t. Note that Nt is a random function of time t, which starts at 0 and jumps
upward by 1 at the epochs S1, S2, . . . of successive renewals. The process

N := {Nt : t ≥ 0}

is called a renewal process, with lifetime distribution F .
We have already seen that the exponential distributions E(λ) play a spe-

cially important role among lifetime distributions. The corresponding re-
newal process is λ, Ppp(λ).

Theorem. Among renewal processes, the Poisson processes are the only
ones that have the Markov property.

Proof. As in discrete time, the Markov property means that, to predict the
future, all that matters is the present, not the past. The present is just the
count of which lightbulb is in current use. How long the current lightbulb
has been in use refers to the past. The Markov property holds iff this is
irrelevant, i.e. iff the lifetimes have the lack-of-memory property (show no
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ageing), i.e. iff F is an exponential distribution E(λ) – the Poisson case. //

Explosions; compactification
Recall from VI that a Lévy process (with infinite mass in its Lévy mea-

sure) makes infinitely many jumps in finite time. In the same way, a Markov
chain in continuous time can make infinitely many jumps in finite time – a
phenomenon known as explosion. This leads to many complications. Even
though there may be infinitely many states, explosion can ‘take the process
through all of them’, to some new ”infinite state”. The question then arises
of whether to stop or kill the process at this point – in which case we have
a process for which time stops – or if not, how to ”re-start the process”. We
then choose the new starting point from some entrance law.

You will have encountered the symbols +∞, −∞ used on the real line R,
and their use to give the extended real line R̄, and perhaps also the extended
complex plane C̄, e.g. via stereographic projection (see e.g. M2P3 L4). Here
C, which is not compact, is embedded in the extended complex plane, which
is compact, by adding a compactification point, or ”point at infinity”.

One needs to do similar things with Markov chains in continuous time, if
they have explosions, or various other types of pathological behaviour. We
compactify the state-space suitably, by adding ”points at infinity”; the com-
pactified chain (or rather, process) may be free of pathological behaviour.
One such process is Ray-Knight compactification. The ”extra” points are
called the boundary; one such is the Martin boundary. One classic patho-
logical chain is the Feller-McKean chain. All this leads us well beyond MSc
level, so we must leave it there. But it does explain why the treatment of
continuous-time Markov chains in books at this level (e.g., [GS] Ch. 6) is
sketchy compared to that of discrete-time Markov chains.
Continuous time and continuous state space

Markov processes are named after A. A. MARKOV (1856-1922) in 1907.
He worked with discrete time and a finite state space. Countably infinite
state spaces were studied by Kolmogorov in 1936, and W. DÖBLIN (Doe-
blin) (1915-1940) in 1937. The term Markov chain used to denote discrete
(finite or countable) state space, but more modern usage, followed in [MT],
uses Markov chain to denote discrete time and Markov process for continuous
time. The extra difficulty of the continuous-time case is mentioned above.
The change in usage reflects the progress made in extending the discrete-state
theory to the continuous-state context, for which see [MT]. This progress has
is highly relevant to (and was partly motivated by) MCMC.
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