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Lecture 4. 16.10.2013
Higher dimensions; joint and marginal distributions

If X = (X1, . . . , Xn) is a random variable taking values in n-dimensional
space – a random n-vector – then its distribution function F is defined as
above, but coordinatewise. If x = (x1, . . . , xn), y = (y1, . . . , yn), we write

x ≤ y iff x1 ≤ y1, . . . , xn ≤ yn.

Then
F (x) := P (X ≤ x) = P (X1 ≤ x1, . . . , Xn ≤ xn).

This is also called the joint distribution of (X1, . . . , Xn), while

Fi(xi) := P (Xi ≤ xi), i = 1, . . . , n

is called the marginal distribution of Xi. Note that letting the jth argument
xj → ∞ eliminates the conditionXj ≤ xj, and so leaves the joint distribution
of the Xs with Xj omitted. So the joint distribution of a random vector
determines the joint distribution of any subvector, and the marginals of its
coordinates, just by letting unwanted arguments go to +∞. In sum: the
joint determines the marginals.
Probability Integral Transformation (PIT).

As F is non-decreasing, it has an inverse function. We use

F−1(x) := inf{x : F (x) ≥ t} = min{x : F (x) ≥ t}

(also non-decreasing, but left-continuous – so the infinum is attained, i.e.
is a minimum). Write X ∼ F to mean that the random variable X has
distribution F . Then if U [0, 1] is the uniform distribution above (probability
= length) and U ∼ U [0, 1], then U is uniformly distributed on [0, 1]; we shall
use this standard notation below. The Probability Integral Transformation
(PIT) uses U and F to generate X:

X := F−1(U) ∼ F. (PIT ).

Proof.
P (X = F−1(U) ≤ x) = P (U ≤ F (x)) = F (x). //

The PIT is very useful in the context of Simulation (using computers to
generate random numbers); see IS, I and p.2. It means that we only need
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random number tables for the uniform distribution U [0, 1], and can then use
(PIT ) to transform this data to have distribution F .
Copulas

The question arises of how to go in the reverse direction. It is helpful to
think of the information in the joint distribution as composed of two parts:
one on the marginals, the other on the dependence between the coordinates –
often of great statistical importance! One needs a function that couples the
marginals together to form the joint. This is called the copula.

A copula C in n dimensions is a probability distribution function on (=
supported by – all its probability mass is on) the unit n-cube [0, 1]n.
Sklar’s Theorem (A. SKLAR, 1958). If F (x) is a joint distribution in n
dimensions, with marginals Fi(xi), there exists an n-dimensional copula C
with

F (x) = F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

Conversely, given any copula C and marginals Fi, this formula gives a joint
distribution F with marginals Fi. The correspondence between F and C is
unique if the marginals Fi are continuous.
Absolute continuity and the Radon-Nikodym theorem

In the density case,

F (x) = P (X ≤ x) =

∫ x

−∞
f(u)du.

In the discrete case,

F (x) = P (X ≤ x) =
∑

n:xn≤x

f(xn).

Each expresses a relationship between measures. In the density case, the
measures are F and λ, Lebesgue measure:

λ(B) = 0 ⇒ F (B) = 0.

In the discrete case, the measures are F and counting measure on the set of
values {n : xn} (think of xn = n, say). In general: if P,Q are measures, we
say Q is absolutely continuous w.r.t. P , written Q << P , if

P (A) = 0 ⇒ Q(A) = 0.
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Then the Radon-Nikodym theorem states that Q << P iff

Q(A) =

∫
A

fdP

for some measurable function f , called the Radon-Nikodym (RN) derivative
of Q w.r.t. P , written f = dQ/dP . Thus each of the fs above is a RN
derivative. See e.g. SP L7, or [S] Ch. 19.

II. DISTRIBUTIONS AND THEIR TRANSFORMS
1. Examples.
1. Uniform U [a, b]. This has density

f(x) = 1/(b− a) (a ≤ x ≤ b), 0 otherwise

and distribution

F (x) = 0 (x ≤ a), (x−a)/(b−a) (a ≤ x ≤ b), 1 (x ≥ b).

The case U [0, 1] is basic – we have met this in I, and seen how to get any
other distribution from it by the Probability Integral Transformation.

U [a, b] forms a two-parameter family. It is statistically interesting, as
maximum-likelihood estimation (MLE) of its parameters is non-regular: in-
stead of getting a normal limit and convergence rate

√
n as usual, we get a

symmetric exponential limit and convergence rate n; see e.g. IS II. This is
typical of situations, as here, where the support (smallest set carrying full
probability, 1) depends on the parameters.
2. Exponential E(λ), λ > 0. This has density

f(x) = λe−λx (x ≥ 0), 0 (x < 0)

and distribution

F (x) = 1− e−λx (x ≥ 0), 0 (x ≤ 0).

Here the mean is E[X] = 1/λ. MLE is regular, and the MLE λ̂ = 1/x̄, as
one would expect (sample mean x̄ corresponds to population mean 1/λ).
3. Normal N(µ, σ2); µ real, σ > 0. Here the density is

f(x) :=
1

σ
√
2π

exp{−1

2
(x− µ)2/σ2}.
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This is a density, and (as the notation suggests) it does indeed have mean µ
and variance σ2 [II.3 Example 1a, L7].

The case µ = 0, σ = 1, the standard normal distribution N(0, 1), is so
important it has special notation: the density and distribution function are
written

ϕ(x) :=
1√
2π

exp{−1

2
x2},

Φ(x) =

∫ x

−∞
ϕ(u)du =

1√
2π

∫ x

−∞
exp{−1

2
u2}du.

Note that Φ(0) = 1
2
by symmetry (and Φ(−∞) = 0, Φ(∞) = 1); for other

values, we have to use tables.
The MLEs for the population mean and variance are the sample mean

and variance:

µ̂ = X̄, σ̂2 = S̄2 (:=
1

n

n∑
1

(Xk − X̄2)).

Note that we use the ”1/n” definition of the sample variance (so that ”bar, or
average, corresponds to expectation”, rather than the alternative ”1/(n−1)”
definition (to get the sample variance unbiased). Always check!
4. Chi-square with n degrees of freedom (df), χ2(n). This is the distribution of
X2

1 + . . .+X2
n, where X1, . . . , Xn are independent and identically distributed

(iid) N(0, 1). It has density

f(x) =
1

2
1
2
nΓ(1

2
n)

.x
1
2
n−1 exp{−1

2
x} (x > 0),

mean n and variance 2n; see e.g. [BF], §2.1.
We quote (see e.g. [BF], Th. 2.4):

(i) X̄ and S2 are independent; (ii) X̄ ∼ N(µ, σ2/n); (iii) nS2/σ2 ∼ χ2(n−1).
5. Student t-distribution with n df, t(n). This is defined as the distribution
of

X :=
√
nU/

√
V ,

where U ∼ N(0, 1), V ∼ χ2(n) and U, V are independent. It has distribution

f(x) =
Γ(1

2
n+ 1

2
)

√
πnΓ(1

2
n)

(
1 +

x2

n

)− 1
2
(n+1)

.
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By above, √
n− 1(X̄ − µ)/S ∼ t(n− 1).

This is very useful when estimating the mean µ without knowing the variance
σ2 (or standard deviation – SD – σ): the nuisance parameter σ cancels on
forming the Student t ratio above.
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