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We quote (see e.g. [GS], 7.2): if 1 ≤ p ≤ r,
(a) Lr ⊂ Lp [true in any finite measure space, but not in general];
(b) convergence in rth mean implies convergence in pth mean
[as expected: the higher the moment, the more restrictive the condition].

Neither of these two strong modes of convergence implies the other.
Definition. We say that Xn → X in probability (in pr) if for all ϵ > 0,

P (|Xn −X| > ϵ) → 0 (n → ∞).

This is a mode of convergence of intermediate strength. Each of the two
strong modes above implies it, but not conversely.

There is a partial converse, due to F. Riesz: if Xn → X in probability,
there is a subsequence along which Xn → X a.s.

Finally, we have a (very useful but) weak mode of convergence.
Definition. Xn → X in distribution if

E[f(Xn)] → E[f(X)]

for all bounded continuous functions f .
The content of Lévy’s convergence theorem for CFs (II.3 above) is that

such behaviour on the particular functions

f(x) := eitx

for t real suffices here.
As the names suggest, the intermediate mode convergence in probability

implies the weak mode convergence in distribution, but not conversely.
Metrics and completeness.

Recall that a metric d = d(., .) is a distance function, generalising that
in Euclidean space. Some but not all metrics are generated by norms ∥.∥,
again as in Euclidean space:

d(x, y) = ∥x− y∥.

Recall a sequence {sn} is called Cauchy if it satisfies the Cauchy condition

∀ϵ > 0 ∃N s.t. ∀m,n ≥ N, |sm − sn| < ϵ,

1



and convergent to s if

∀ϵ > 0 ∃N s.t. ∀n ≥ N, |sn − s| < ϵ.

Convergence implies the Cauchy condition (by the triangle inequality). The
converse is true for the reals R (Cauchy’s General Principle of Convergence),
and similarly for the complex plane C, but false for the rationals Q. We call
a metric space complete if every Cauchy sequence is convergent; thus R, C
are complete, but Q not.

Convergence in pth mean (or in Lp) is metric, and generated by the Lp-
norm:

∥X∥p := (E[|X|p])1/p.

By the Riesz-Fischer theorem, the Lp-spaces are complete.
Convergence in probability is also given by a metric:

d(X, Y ) := E
( |X − Y |
1 + |X − Y |

)
.

This metric is also complete.
Convergence in distribution is also generated by a metric, the Lévy metric:

d(F,G) := inf{ϵ > 0 : F (x− ϵ)− ϵ ≤ G(x) ≤ F (x+ ϵ) + ϵ for all x}

(the French probabilist Paul LÉVY (1886-1971) in 1937) (it is not obvious,
but it is true, that d is a metric): if Fn, F are distribution functions,

Fn → F in distribution ⇔ d(Fn, F ) → 0.

This is also equivalent to

Fn(x) → F (x) (n → ∞) at all continuity points x of F .

The restriction to continuity points x of F here is vital: take Xn, X as con-
stants cn, c with cn → c. We should clearly have cn → c in distribution
regarded as random variables; the distribution function F of c is 0 to the left
of c and 1 at c and to the right; pointwise convergence takes place everywhere
except c (the only interesting point here).

We quote that the Lévy metric is complete.
Egorov’s theorem; almost uniform convergence. We quote (D. F. EGOROV
(1869-1931) in 1911)

2



Egorov’s theorem. If Xn → Z a.s., then for all ϵ > 0 there exists a set of
probability < ϵ off which Xn → X uniformly (in ω). This property is called
almost uniform convergence. So Egorov’s theorem states that almost sure
and almost uniform convergence are equivalent.

It follows from this that almost sure convergence (‘strong’) implies con-
vergence in probability (‘weak’), as above.

Convergence in probability (‘intermediate’) implies convergence in distri-
bution (‘weak’). We quote this.

There is no converse, but there is a partial converse [which we shall use
below]. If Xn converges in distribution to a constant c, then since the distri-
bution function of the constant c is 0 to the left of c and 1 at c and to the
right, it is easy to see that in fact Xn → c in probability.
Example. We show by example that convergence in pr does not imply a.s.
convergence (a fact known to F. Riesz in 1912). On the Lebesgue measure
space [0, 1] (i.e., ([0, 1],Λ, λ), let

sn := 1/2 + 1/3 + . . .+ 1/n (mod 1), An := [sn−1, sn], Xn := IAn .

Since the harmonic series diverges, theXn endlessly move rightwards through
the interval [0, 1], exiting right and reappearing left. So the Xn do not con-
verge anywhere, in particular are not a.s. convergent. But since Xn = 0
except on a set of probability 1/n, Xn → 0 in probability.
Three classical convergence theorems. We quote (see e.g. SP L6, 8):
M (Lebesgue’s monotone convergence theorem). If Xn ≥ 0, Xn ↑ X, then
E[Xn] ↑ E[X].
F (Fatou’s lemma). If Xn ≥ 0, then E[lim infXn] ≤ lim inf E[Xn].
D (Lebesgue’s dominated convergence theorem). If Xn → X a.s., |Xn| ≤ Y
with E[Y ] < ∞, then E[Xn] → E[Y ].

2. The Weak Law of Large Numbers (WLLN) and the Central
Limit Theorem (CLT).

Recall that by Real Analysis,

(1 +
x

n
)n → ex (n → ∞)

(this expresses compound interest, or exponential growth, as the limit of
simple interest as the interest is compounded more and more often). This
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extends also to complex number z, and to zn → z:

(1 +
zn
n
)n → ez (n → ∞).

The next result is due to Lévy in 1925, and in more general form to
the Russian probabilist A. Ya. KHINCHIN (1894-1956) in 1929 and to Kol-
mogorov in 1928/29.

Theorem (Weak Law of Large Numbers, WLLN). If Xi are iid with
mean µ,

1

n

n∑
1

Xk → µ (n → ∞) in probability.

Proof. If the Xk have CF ϕ(t), then as the mean µ exists ϕ(t) = 1+ iµt+o(t)
as t → 0. So (X1 + . . .+Xn)/n has CF

E exp{it(X1 + . . .+Xn)/n} = [ϕ(t/n)]n = [1 +
iµt

n
+ o(1/n)]n,

for fixed t and n → ∞. By above, the RHS has limit eiµt as n → ∞. But
eiµt is the CF of the constant µ. So by Lévy’s continuity theorem,

(X1 + . . .+Xn)/n → µ (n → ∞) in distribution.

Since the limit µ is constant, by II.4 (L11), this gives

(X1 + . . .+Xn)/n → µ (n → ∞) in probability. //

As the name implies, the Weak LLN can be strengthened, to the Strong
LLN (with a.s. convergence in place of convergence in probability). We turn
to this later, but proceed with a refinement of the method above, in which
we retain one more term in the Taylor expansion of the CF. Recall first that
the CF of the standard normal distribution Φ = N(0, 1), with density ϕ(x)
and distribution function Φ(x)

ϕ(x) :=
e−x2/2

√
2π

, Φ(x) :=

∫ x

∞
ϕ(u)du

is e−t2/2.

Theorem (Central Limit Theorem, CLT). If X1, . . . Xn, . . . are iid with
mean µ and variance σ2, and Sn := X1 + . . .+Xn, then

(Sn − nµ)/(σ
√
n) → Φ = N(0, 1) (n → ∞) in distribution.
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