SOLUTIONS 7 28.11.2013

Q1. We have to check the defining property (CE) (V.1, L18) for $B = \emptyset$ and $B = \Omega$. For $B = \emptyset$ both sides are zero; for $B = \Omega$ both sides are EY. //

(ii) We have to check (CE) for all sets $B \in \mathcal{A}$. The only integrand that integrates like Y over all sets is Y itself, or a function agreeing with Y except on a set of measure zero.

(iii) Recall that Y is always \mathcal{A} -measurable (this is the definition of Y being a random variable). For $\mathcal{B} \subset \mathcal{A}$, Y may not be \mathcal{B} -measurable, but if it is, the proof above applies with \mathcal{B} in place of \mathcal{A} .

(iv) (Tower property). If $\mathcal{C} \subset \mathcal{B}$, $E[E(Y|\mathcal{B}) | \mathcal{C}] = E[Y|\mathcal{C}]$ a.s.

Proof. $E_{\mathcal{C}}E_{\mathcal{B}}Y$ is \mathcal{C} -measurable, and for $C \in \mathcal{C} \subset \mathcal{B}$,

$$\int_{C} E_{\mathcal{C}}[E_{\mathcal{B}}Y]dP = \int_{C} E_{\mathcal{B}}YdP \qquad \text{(definition of } E_{\mathcal{C}} \text{ as } C \in \mathcal{C})$$

$$= \int_{C} YdP \qquad \text{(definition of } E_{\mathcal{B}} \text{ as } C \in \mathcal{B}).$$

So $E_{\mathcal{C}}[E_{\mathcal{B}}Y]$ satisfies the defining relation for $E_{\mathcal{C}}Y$. Being also \mathcal{C} -measurable, it is $E_{\mathcal{C}}Y$ (a.s.). //

9 (iv') (Tower property). If $\mathcal{C} \subset \mathcal{B}$, $E[E(Y|\mathcal{C}) | \mathcal{B}] = E[Y|\mathcal{C}]$ a.s.

Proof. $E[Y|\mathcal{C}]$ is \mathcal{C} -measurable, so \mathcal{B} -measurable as $\mathcal{C} \subset \mathcal{B}$, so $E[.|\mathcal{B}]$ has no effect, by (iii). //

Corollary. $E[E(Y|\mathcal{C}) | \mathcal{C}] = E[Y|\mathcal{C}]$ a.s.

So the operation $E[.|\mathcal{C}]$ is linear and *idempotent* (doing it twice is the same as doing it once), so is a *projection*. So we can use what we know about projections, from Ch. IV, Linear Algebra, Functional Analysis etc.

Q2. (i) For $t \neq 0$, X is Gaussian with zero mean (as B is), and continuous (again, as B is). The covariance of B is $\min(s,t)$. The covariance of X is

$$cov(X_s, X_t) = cov(sB(1/s), tB(1/t)) = E[sB(1/s), tB(1/t)] = st.E[B(1/s)B(1/t)]$$
$$= st.cov(B(1/s), B(1/t)) = st.\min(1/s, 1/t) = \min(t, s) = \min(s, t).$$

This is the same covariance as Brownian motion. So, away from the origin, X is Brownian motion, as a Gaussian process is uniquely characterized by

its mean and covariance (from the properties of the multivariate normal distribution). So X is continuous. So we can define it at the origin by continuity. So X is Brownian motion everywhere – X is BM.

(ii) Since Brownian motion is 0 at the origin, X(0) = 0. Since Brownian motion is continuous at the origin, $X(t) \to 0$ as $t \to 0$. This says that

$$tB(1/t) \to 0$$
 $(t \to 0)$, i.e. $B(t)/t \to 0$ $(t \to \infty)$

Note. For t integer, this is the Strong Law of Large Numbers applied to the distribution of B(1), which is standard normal. The above neat proof by time-inversion follows from the proof of existence of Brownian motion (defined to be continuous), given in lectures by the PWZ wavelet expansion.

Q3. Brownian bridge $X_t := B_t - tB_1$ ($t \in [0,1]$) is Gaussian (it is obtained from the Gaussian process B by linear operations – as in the multivariate normal distribution, IV.3). It has mean 0 (as B does), and covariance

$$E[X_sX_t] = E[(B_s - sB_1)(B_t - tB_1)] = E[B_sB_t] - tE[B_sB_1] - sE[B_tB_1] + stE[B_1^2]$$

$$= \min(s, t) - t \min(s, t) - s \min(t, t) + st = \min(s, t) - st - st + st = \min(s, t) - st$$

Q4. (i) The number of subsets of size n of a set of size 2n is $\binom{2n}{n}$. If this subset contains k white balls, these can be chosen in $\binom{n}{k}$ ways; the remaining n-k balls are black, and can be chosen in $\binom{n}{n-k}=\binom{n}{k}$ ways, giving $\binom{n}{k}^2$ ways altogether; sum over k. (ii)

$$\sum_{i} \binom{2n}{i} x^{i} = \left(\sum_{j} \binom{n}{j} x^{j}\right) \left(\sum_{k} \binom{n}{k} x^{k}\right).$$

Extracting the coefficient of x^n gives $\binom{2n}{n}$ on the left and $\sum_j \binom{n}{j} \binom{n}{n-j} = \sum_j \binom{n}{j}^2$ on the right.

(iii) The number of routes from the vertex to the central element in row 2n is $\binom{2n}{n}$. There are $\binom{n}{k}$ routes from the vertex to the element $\binom{n}{k}$ in row n. By symmetry of the "square" with top corner the vertex and bottom corner $\binom{2n}{n}$ about its horizontal diagonal, the number of routes from $\binom{n}{k}$ to $\binom{2n}{n}$ is $\binom{n}{k}$. So there are $\binom{n}{k}$ routes passing through $\binom{n}{k}$; sum over k. NHB