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SOLUTIONS 7 28.11.2013

Q1. We have to check the defining property (CE) (V.1, L18) for B = ∅ and
B = Ω. For B = ∅ both sides are zero; for B = Ω both sides are EY . //
(ii) We have to check (CE) for all sets B ∈ A. The only integrand that in-
tegrates like Y over all sets is Y itself, or a function agreeing with Y except
on a set of measure zero.
(iii) Recall that Y is always A-measurable (this is the definition of Y being
a random variable). For B ⊂ A, Y may not be B-measurable, but if it is, the
proof above applies with B in place of A.
(iv) (Tower property). If C ⊂ B, E[E(Y |B) |C] = E[Y |C] a.s.

Proof. ECEBY is C-measurable, and for C ∈ C ⊂ B,∫
C
EC[EBY ]dP =

∫
C
EBY dP (definition of EC as C ∈ C)

=
∫
C
Y dP (definition of EB as C ∈ B).

So EC[EBY ] satisfies the defining relation for ECY . Being also C-measurable,
it is ECY (a.s.). //
9 (iv’) (Tower property). If C ⊂ B, E[E(Y |C) |B] = E[Y |C] a.s.
Proof. E[Y |C] is C-measurable, so B-measurable as C ⊂ B, so E[.|B] has no
effect, by (iii). //
Corollary. E[E(Y |C) |C] = E[Y |C] a.s.
So the operation E[.|C] is linear and idempotent (doing it twice is the same
as doing it once), so is a projection. So we can use what we know about
projections, from Ch. IV, Linear Algebra, Functional Analysis etc.

Q2. (i) For t ̸= 0, X is Gaussian with zero mean (as B is), and continuous
(again, as B is). The covariance of B is min(s, t). The covariance of X is

cov(Xs, Xt) = cov(sB(1/s), tB(1/t)) = E[sB(1/s).tB(1/t)] = st.E[B(1/s)B(1/t)]

= st.cov(B(1/s), B(1/t)) = st.min(1/s, 1/t) = min(t, s) = min(s, t).

This is the same covariance as Brownian motion. So, away from the origin,
X is Brownian motion, as a Gaussian process is uniquely characterized by
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its mean and covariance (from the properties of the multivariate normal
distribution). So X is continuous. So we can define it at the origin by
continuity. So X is Brownian motion everywhere – X is BM.
(ii) Since Brownian motion is 0 at the origin, X(0) = 0. Since Brownian
motion is continuous at the origin, X(t) → 0 as t → 0. This says that

tB(1/t) → 0 (t → 0), i.e. B(t)/t → 0 (t → ∞).

Note. For t integer, this is the Strong Law of Large Numbers applied to the
distribution of B(1), which is standard normal. The above neat proof by
time-inversion follows from the proof of existence of Brownian motion (de-
fined to be continuous), given in lectures by the PWZ wavelet expansion.

Q3. Brownian bridge Xt := Bt − tB1 (t ∈ [0, 1]) is Gaussian (it is obtained
from the Gaussian process B by linear operations – as in the multivariate
normal distribution, IV.3). It has mean 0 (as B does), and covariance

E[XsXt] = E[(Bs−sB1)(Bt−tB1)] = E[BsBt]−tE[BsB1]−sE[BtB1]+stE[B2
1 ]

= min(s, t)−tmin(s, 1)−smin(t, 1)+st = min(s, t)−st−st+st = min(s, t)−st.

Q4. (i) The number of subsets of size n of a set of size 2n is
(
2n
n

)
. If this

subset contains k white balls, these can be chosen in
(
n
k

)
ways; the remaining

n − k balls are black, and can be chosen in
(

n
n−k

)
=
(
n
k

)
ways, giving

(
n
k

)2
ways altogether; sum over k.
(ii) ∑

i

(
2n

i

)
xi = (

∑
j

(
n

j

)
xj)(

∑
k

(
n

k

)
xk).

Extracting the coefficient of xn gives
(
2n
n

)
on the left and

∑
j

(
n
j

)(
n

n−j

)
=∑

j

(
n
j

)2
on the right.

(iii) The number of routes from the vertex to the central element in row 2n

is
(
2n
n

)
. There are

(
n
k

)
routes from the vertex to the element

(
n
k

)
in row n.

By symmetry of the ”square” with top corner the vertex and bottom corner(
2n
n

)
about its horizontal diagonal, the number of routes from

(
n
k

)
to
(
2n
n

)
is(

n
k

)
. So there are

(
n
k

)
routes passing through

(
n
k

)
; sum over k. NHB
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