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SOLUTIONS 7 28.11.2013

Q1. We have to check the defining property (CE) (V.1, L18) for B = () and
B = Q. For B = () both sides are zero; for B = Q both sides are EY. //
(ii) We have to check (C'E) for all sets B € A. The only integrand that in-
tegrates like Y over all sets is Y itself, or a function agreeing with Y except
on a set of measure zero.

(iii) Recall that Y is always A-measurable (this is the definition of Y being
a random variable). For B C A, Y may not be B-measurable, but if it is, the
proof above applies with B in place of A.

(iv) (Tower property). If C C B, E[E(Y|B) |C] = E[Y|C] as.

Proof. EcEgY is C-measurable, and for C' € C C B,

/C Ec|EsY]dP = /C EsYdP  (definition of Ec as C € C)

= / YdP (definition of Ep as C' € B).
c

So E¢[EgY] satisfies the defining relation for E¢Y . Being also C-measurable,
it is EcY (a.s.). //

9 (iv’) (Tower property). If C C B, E[E(Y|C) |B] = E[Y|C] a.s.

Proof. E[Y|C] is C-measurable, so B-measurable as C C B, so E[.|B] has no
effect, by (iii). //

Corollary. E[E(Y|C) |C] = E[Y|C] a.s.

So the operation E[.|C] is linear and idempotent (doing it twice is the same
as doing it once), so is a projection. So we can use what we know about
projections, from Ch. IV, Linear Algebra, Functional Analysis etc.

Q2. (i) For t # 0, X is Gaussian with zero mean (as B is), and continuous
(again, as B is). The covariance of B is min(s,t). The covariance of X is

cov(Xs, X¢) = cov(sB(1/s),tB(1/t)) = E[sB(1/s).tB(1/t)] = st.E[B(1/s)B(1/t)]

= st.cov(B(1/s), B(1/t)) = st.min(1/s, 1/t) = min(t, s) = min(s, ).

This is the same covariance as Brownian motion. So, away from the origin,
X 1s Brownian motion, as a Gaussian process is uniquely characterized by
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its mean and covariance (from the properties of the multivariate normal
distribution). So X is continuous. So we can define it at the origin by
continuity. So X is Brownian motion everywhere — X is BM.

(ii) Since Brownian motion is 0 at the origin, X (0) = 0. Since Brownian
motion is continuous at the origin, X (f) — 0 as ¢ — 0. This says that

tB(1/t) — 0 (t—0), ie. B(t)/t =0 (t — 0).

Note. For t integer, this is the Strong Law of Large Numbers applied to the
distribution of B(1), which is standard normal. The above neat proof by
time-inversion follows from the proof of existence of Brownian motion (de-
fined to be continuous), given in lectures by the PWZ wavelet expansion.

Q3. Brownian bridge X; := B; — tBy (t € [0,1]) is Gaussian (it is obtained
from the Gaussian process B by linear operations — as in the multivariate
normal distribution, IV.3). It has mean 0 (as B does), and covariance

E[X,X,] = E[(B,—sBy)(B,—tB,)] = E[B,B,|—tE|[B,B,]|—sE|B,Bi|+st E[B]

= min(s,t)—t min(s, 1)—smin(t, 1)+st = min(s, t)—st—st+st = min(s,t)—st.

Q4. (i) The number of subsets of size n of a set of size 2n is (2:) If this

n

k) ways; the remaining

subset contains k& white balls, these can be chosen in (

2
n — k balls are black, and can be chosen in (nﬁk) = (Z) ways, giving (Z)
ways altogether; sum over k.
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Extracting the coefficient of z™ gives (27?) on the left and 3, (’;) (nij) =
> (@)2 on the right.

j
(iii) The number of routes from the vertex to the central element in row 2n

is (2:) There are (Z) routes from the vertex to the element (Z) in row n.

By symmetry of the "square” with top corner the vertex and bottom corner
2") about its horizontal diagonal, the number of routes from (Z) to (27?) is

(Z) So there are (Z) routes passing through (Z), sum over k. NHB



