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Lecture 11. 4.11.2014
Proof of the Glivenko-Cantelli Theorem (continued).

In the general case, we use the Probability Integral Transformation (PIT,
IS, I). Let U1, . . . , Un . . . be iid uniforms, Un ∼ U(0, 1). Let Yn := g(Un),
where g(t) := sup{x : F (x) < t}. By PIT, Yn ≤ x iff Un ≤ F (x), so the Yn

are iid with law F , like the Xn, so wlog take Yn = Xn. Writing Gn for the
empiricals of the Un,

Fn = Gn(F ).

Writing A for the range (set of values) of F ,

sup
x

|Fn(x)− F (x)| = sup
t∈A

|Gn(t)− t| ≤ sup
[0,1]

|Gn(t)− t|,→ 0 a.s.,

by the result (proved above) for the continuous case. //

If F is continuous, then the argument above shows that

∆n := sup
x

|Fn(x)− F (x)|

is independent of F , in which case we may take F = U(0, 1), and then

∆n = sup
t∈(0,1)

|Fn(t)− t|.

Here ∆n is theKolmogorov-Smirnov (KS) statistic, which by above is distribution-
free if F is continuous. It turns out that there is a uniform CLT corresponding
to the uniform LLN given by the Glivenko-Cantelli Theorem: ∆n → 0 at rate√
n. The limit distribution is known – it is the Kolmogorov-Smirnov (KS)

distribution (Kolmogorov in 1933, N. V. SMIRNOV (1900-1966) in 1944)

1− 2
∞∑
1

(−)k+1e−2k2x2

(x ≥ 0).

It turns out also that, although this result is a limit theorem for random
variables, it follows as a special case of a limit theorem for stochastic pro-
cesses. Writing B for Brownian motion, B0 for the Brownian bridge (B0(t) :=
B(t)− t, t ∈ [0, 1]),

Zn :=
√
n(Gn(t)− t) → B0(t), t ∈ [0, 1]
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(Donsker’s Theorem: Monroe D. DONSKER (1925-1991) in 1951, originally,
the Erdös-Kac-Donsker Invariance Principle). The relevant mathematics
here is weak convergence of probability measures (under an appropriate topol-
ogy). Thus, the KS distribution is that of the supremum of Brownian bridge.
For background, see e.g. Kallenberg Ch. 14.
Higher dimensions.

In one dimension, the half-lines (−∞, x] form the obvious class of sets to
use – e.g., by differencing they give us the half-open intervals (a, b], and we
know from Measure Theory that these suffice. In higher dimensions, obvi-
ous analogues are the half-spaces, orthants (sets of the form

∏n
k=1(−∞, xk]),

etc. – the geometry of Euclidean space is much richer in higher dimensions.
We call a class of sets a Glivenko-Cantelli class if a uniform LLN holds
for it, a Donsker class if a uniform CLT holds for it. For background, see
e.g. [vdVW]. This book also contains a good treatment of the delta method
(below) in this context – the von Mises calculus (Richard von MISES, 1883-
1953), or infinite-dimensional delta method.
Variance-Stabilising Transformations

In exploratory data analysis (EDA), the scatter plot may suggest that
the variance is not constant throughout the range of values of the predictor
variable(s). But, the theory of the Linear Model assumes constant variance.
Where this standing assumption seems to be violated, we may seek a sys-
tematic way to stabilise the variance – to make it constant (or roughly so),
as the theory requires.

If the response variable is y, we do this by seeking a suitable function g
(sufficiently smooth – say, twice continuously differentiable), and then trans-
forming our data by

y 7→ g(y).

Suppose y has mean µ:
Ey = µ.

Taylor expand g(y) about y = µ:

g(y) = g(µ) + (y − µ)g′(µ) +
1

2
(y − µ)2g′′(µ) + . . .

Suppose the bulk of the response values y are fairly closely bunched around
the mean µ. Then, approximately, we can treat y−µ as small; then (y−µ)2

is negligible (at least to a first approximation, which is all we are attempting
here). Then

g(y) ∼ g(µ) + (y − µ)g′(µ).
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Take expectations: as Ey = µ, Eg(y) ∼ g(µ). So

g(y)− g(µ) ∼ g(y)− Eg(y) ∼ g′(µ)(y − µ).

Square both sides:

[g(y)− g(µ)]2 ∼ [g′(µ)]2(y − µ)2.

Take expectations: as Ey = µ and Eg(y) ∼ g(µ), this says

var(g(y)) ∼ [g′(µ)]2var(y).

Regression. So if

E(yi|xi) = µi, var(yi|xi) = σ2
i ,

we use EDA to try to find some link between the means µi and the variances
σ2
i . Suppose we try σ2

i = H(µi), or

σ2 = H(µ).

Then by above,

var(g(y)) ∼ [g′(µ)]2σ2 = [g′(µ)]2H(µ).

We want constant variance, c2 say. So we want

[g′(µ)]2H(µ) = c2, g′(µ) =
c√
H(µ)

, g(y) = c

∫
dy√
H(y)

.

Note. The idea of variance-stabilising transformations (like so much else in
Statistics) goes back to Fisher (R. A. (Sir Ronald) FISHER (1890-1962)).
He found the density of the sample correlation coefficient r2 in the bivariate
normal distribution – a complicated function involving the population corre-
lation coefficient ρ2, simplifying somewhat in the case ρ = 0 (see e.g. [KS1],
§16.27, 28). But Fisher’s z-transformation of 1921 ([KS1], §16.33)

r = tanh z, z =
1

2
log(

1 + r

1− r
), ρ = tanh ζ, ζ =

1

2
log(

1 + ρ

1− ρ
)

gives z approximately normal, with variance almost independent of ρ:

z ∼ N(0, 1/(n− 1)).
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4. Infinite divisibility; self-decomposability; stability: I ⊃ SD ⊃ S
In the CLT, the limit distribution is normal, N(0, 1), CF exp{−1

2
t2}. But

exp{−1

2
t2} = [exp{−1

2
t2/n}]n (n = 1, 2, . . .)

expresses the CF of the limit law N(0, 1) as the nth power of the CF of
another probability law, N(0, 1/n). So N(0, 1) is the nth convolution of
N(0, 1/n). We think of this as ‘splitting N(0, 1) up into n independent
parts’: N(0, 1) is n times ‘divisible’. We can do this for each n, so N(0, 1) is
‘infinitely divisible’.

Similarly for X Poisson P (λ): the CF is

E[eitX ] =
∞∑
n=0

e−λλn.eitn/n! = exp{−λ(1− eit)} = [exp{−(λ/n)(1− eit)}]n,

so P (λ) is the n-fold convolution of P (λ/n), for each n. So the Poisson
distributions are infinitely divisible (id).

We can extend this to the compound Poisson distribution CP (λ, F ), which
is very important in the actuarial/insurance industry. Suppose that the
number of claims is Poisson P (λ), and that the claim sizes are iid, with
distribution F and CF ϕ. Then conditional on the number of claims being
n, the total claimed in the nth convolution F ∗n, and the CF is ϕn. So the
total X claimed has CF

E[eitX ] =
∞∑
n=0

e−λλn.ϕ(t)n/n! = exp{−λ(1−ϕ(t))} = [exp{−(λ/n)(1−ϕ(t))}]n.

So CP (λ, F ) is the n-fold convolution of CP (λ/n, F ) for each n, so is id.
But this holds much more generally.
Definition. We say that a random variable X, or its distribution F , is in-
finitely divisible (id) if for each n = 1, 2, . . ., X has the same distribution as
the sum of n independent identically distributed random variables. We write
I for the class of infinitely divisible distributions.

It turns out that I is also the class of limit laws of row-sums of triangu-
lar arrays, as follows. We say that {xnk} (k = 1, . . . , kn, n = 1, 2, . . .) is a
triangular array if for each n, the Xnk are independent;
we say that the array is uniformly asymptotically negligible (uan, more briefly
negligible), if for all ϵ > 0,

P ( max
1≤k≤kn

|Xnk| > ϵ) → 0 (n → ∞).
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