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V. MARKOV CHAINS
Markov chains are our first examples of stochastic processes (Ch. VI

below: stochastic = random; process = unfolding with time). For most
of Ch. V, both time and state will be discrete. Because the essence of the
Markov property is that all one needs to know is where one is rather than how
one got there so far as predicting the future is concerned, the probabilistic
structure is determined by the transition mechanism (from ‘where now’ to
‘where next time’). In the discrete case, this is expressed by a matrix. So
the more elaborate machinery of Ch. VI is not needed here. Doing Markov
chains now has two advantages:
(i) it gives earlier familiarity with Markov chains, important in Statistics for
Markov chain Monte Carlo (MCMC);
(ii) when we begin general stochastic processes (Ch. VI), we already have a
rich store of examples to hand.
1. Notation and Examples.

Recall that a Markov process in discrete time is a stochastic process X =
(Xn) with

P (Xn ∈ A|Xm, B) = P (Xn ∈ A|Xm)

for time m < n, where B denotes an event depending on values of X for time
< m (think of m here as the present, n > m as in the future, and B as in the
past). In words: the conditional probability of the future given the present
and the past is that same as that of the future given the present only. That
is, where you are is all that counts, not how you got there.

The values taken by the process X = (Xn) may be discrete or continuous.
The discrete case is easier, so we begin with it. The X-values form a finite
or countable set, {xn}. It is usually possible to disregard the precise values
xn and replace them by labels, n. Usually the label set will be the natural
numbers N, N0 := N∪{0}, Nn := {1, . . . , n}, N0

n := Nn∪{0}, or Z, depending
on context. In general, write Ek for state k.
Example: Simple random walk on Z: the label set is Z, and so is the value
set.

It is conventional to refer to a Markov process with both time and state
discrete as a Markov chain. To describe such a Markov chain, we need the
transition probabilities P (Xn+1 = j|Xn = i). We confine ourselves here,
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for simplicity, to the most important special case, when these transition
probabilities are stationary – do not depend on n:

pij := P (Xn+1 = i|Xn = j) = P (i → j),

in an obvious notation. We assemble these transition probabilities (pij) into
a transition (probability) matrix

P := (pij)

(the matrix whose (i, j) element is pij). Similarly, we define the n-step tran-
sition probabilities

p
(n)
ij := P (Xm+n = j|Xm = i) = P (i → j in n steps)

(by stationarity, this does not depend on m), and form the n-step transition

(probability) matrix P (n) := (p
(n)
ij ):

P (n) := (p
(n)
ij ).

Note. 1. Here i and j run through the possible states of the chain. Usually,
these will be labelled {1, 2, . . . , N} in the finite case, {1, 2, . . .} in the (count-
ably) infinite case. It pays to keep the notation flexible, to cover both cases.
2. Much of what we will cover applies to both finite and infinite chains.
Finite chains have certain special properties (VII.4). We are also much more
familiar with finite matrices than with infinite ones. Bear in mind that in
the infinite case, matrices and sums over states are both infinite.
3. A matrix is called stochastic if its entries are non-negative and sum to 1.
The transition probability matrix P = (pij) of a Markov chain is stochastic,
as

pij = P (i → j) ≥ 0,∑
j
pij =

∑
j
P (i → j) = 1

– as the chain has to go somewhere. Infinite matrices are difficult in general,
but stochastic matrices are much simpler, and are often no harder to handle
than finite matrices.
Theorem (Chapman-Kolmogorov equations).

P (n) = P n :
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the n-step transition probability matrix is the nth matrix power of the (1-
step) transition probability matrix.
Proof. For n = 2:

p
(2)
ij = P (i → j in 2 steps)

=
∑

k
P (i → k → j)

=
∑

k
P (i → k on first step).P (k → j on second step|i → k on first step)

=
∑

k
P (i → k).P (k → j),

using the Markov property in the second term. This says that

p
(2)
ij =

∑
k
pikpkj,

the (i, j) element of the second matrix power P 2.
For the general case we can use induction on the power n. Alternatively,

we can argue as follows. The probability of going from i to j in n steps is,
summing over all possible paths from i to j in n steps,

p
(n)
ij =

∑
k1,...,kn−1

P (i → k1).P (k1 → k2|i → k1).P (k2 → k3|i → k1 → k2)

. . . P (kn−1 → j|i → k1 → . . . → kn−1),

by iterated conditional expectation. Using the Markov property,, the RHS
simplifies to

p
(n)
ij =

∑
k1,...,kn−1

P (i → k1).P (k1 → k2).P (k2 → k3) . . . P (kn−1 → j).

The LHS is the (i, j) element of P (n), while the RHS is the (i, j) element
of the nth matrix power P n of P . Since this holds for all i and j, the two
matrices are equal, as required. //

This result is vital. It shows one of the great advantages of Markov chain
theory – that it is perfectly adapted to the theory of matrices and Linear
Algebra, which is very well developed.
Note. The result is named after Sydney CHAPMAN (1888-1970), an English
applied mathematician (paper of 1928) and Kolmogorov (paper of 1931).
Initial distribution. Suppose that the position at time t = 0 is random, with

pi := P (X0 = i).
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Form the row-vector
p := (p0, p1, . . .).

Then

P (Xn = j) =
∑

i
P (Xn = j & X0 = i)

=
∑

i
P (X0 = i)P (Xn = j|X0 = i)

=
∑

i
pip

(n)
ij

= (pP (n))j.

That is, the row-vector pP (n) = pP n gives the distribution of the chain at
time n.
Note. 1. Because it is natural to specify where we are at one time (at i with
probability pi), and then where we go to next (go from i to j with probability
pij), it is row-vectors, rather than column-vectors, that are more useful in
Markov chain theory.

This is worth bearing in mind, as in Linear Algebra the convention is often
adopted that vectors are column-vectors (by default – i.e., unless otherwise
specified), in which case one needs to use a transpose sign (AT denotes the
transpose of a matrix A) to obtain a row-vector. This is actually unnecessary
here: vectors, row or column, are special cases of matrices, and it is better
not to clutter things up with unnecessary transpose signs.
2. Precisely for this reason, one sometimes sees pji used for what we call pij,
as in e.g. [M], Ch. 3: Markov processes.
Beware of this if using this otherwise excellent book!
Stationary distribution.

Suppose that the initial distribution π satisfies the linear equations

πP = π. (SD)

Then by above, its distribution after one step is πP = π. Similarly, its
distribution after n steps is

πP (n) = πP n = πP.P n−1 = πP n−1 = πP n−2 = . . . = πP = π :

the distribution stays the same for all time. Such a distribution is called sta-
tionary, or invariant, or an equilibrium distribution. We shall return to such
distributions later, when we shall see that they are (under broad conditions)
limiting distributions, to which the chain settles down as time passes.
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