
pfsl18(14).tex
Lecture 18. 28.11.2014 (half-hour – Problems)
Stationary distributions (continued).

Observe that the linear equations (SD) are homogeneous: if π is a so-
lution, then so is cπ for any scalar c. We are only interested in solutions
π = (πj) which are probability distributions, i.e. πj ≥ 0,

∑
jπj = 1. There

may well be solutions but not solutions of this type; we shall meet examples
of this below.
Examples.
1. Two states. This is the simplest possible case:

P =

(
1− α α
β 1− β

)
.

There are two common interpretations:
(i) Motion on the line with constant speed,

α = P (change direction to left|going right), β = P (change direction to right|going left).

(ii) Rainfall. This chain has been used to model rainfall data, with days in
Tel Aviv being classified as dry (if no rain falls) and wet otherwise. It gives
a reasonable fit to the Tel Aviv rainfall data. For details, see [CM], 3.2.
2. Gambler’s ruin: Random walk with absorbing barriers on a finite set. Here

P =



1 0 0 . . . 0 0 0
q 0 p . . . 0 0 0
0 q 0 p . . . 0 0
. . . . . . . . . . . .

. . . . . . . . . . . . q 0 p

. . . . . . . . . . . . 0 0 1

 .

Random walk is given by an infinite matrix on the integers, with the tri-
diagonal structure above (0 diagonal, p in the super-diagonal, q in the sub-
diagonal throughout).
3. Gambling for fun: Random walk with reflecting barriers on a finite set.
If our gamblers are playing for fun rather than for money, they may decide
that to avoid the game stopping when a player is ruined, his last stake is
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returned to him so that he can continue playing. The matrix is replaced by

P =



q p 0 . . . 0 0 0
q 0 p . . . 0 0 0
0 q 0 p . . . 0 0
. . . . . . . . . . . .

. . . . . . . . . . . . q 0 p

. . . . . . . . . . . . 0 q p

 .

4. Cyclic random walk. Suppose the states represent positions on a circle:

P =


q0 q1 . . . . . . qa−1

qa−1 q0 . . . . . . qa−2

. . . . . . . . . . . .

q1 q2 . . . qa−1 q0

 .

5. Ehrenfest model of diffusion: Ehrenfest urn. Suppose that N balls are
distributed between two urns. At each stage, a ball is chosen at random
(each with probability 1/N) and changed to the other urn. The state is the
number of balls in Urn 1. Then

pi,i−1 = i/N, pi,i+1 = 1− i/N, pi,j = 0 otherwise

(the first represents the chance that a ball in Urn 1 is chosen, and changed
to Urn 2, the second that a ball in Urn 2 is chosen, with the complementary
probability, and changed to Urn 1). The matrix is again tri-diagonal:

P =



0 1 0 . . . 0 0 0
1/N 0 1− 1/N . . . 0 0 0
0 2/N 0 1− 2/N . . . 0 0
. . . . . . . . . . . .

. . . . . . . . . . . . 1− 1/N 0 1/N

. . . . . . . . . . . . 0 1 0

 .

The motivation for this model is Statistical Mechanics (Paul EHRENFEST
(1880-1933) and Tatyana Ehrenfest, in 1907, published in 1911). The balls
represent molecules of a gas (so for a physically observable system, will be
present in enormous numbers – recall Avogradro’s number, c. 6.02× 1023, is
the number of gas molecules per standard volume under standard conditions).
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