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Lecture 21. 27.11.2013 (half-hour – Problems)

Note. Relevant here is the concept of entropy – a measure of disorder.
For details, see Problems and Solutions 9 and 10.
Markov Chain Monte Carlo (MCMC).

The area of Markov chain Monte Carlo (MCMC), for which see e.g.
Häggström [Hag] Ch. 7, 8, originated in physics, but has since become ex-
tremely important in statistics, particularly Bayesian statistics (for which see
e.g. SMF, IV). The idea is to sample, or simulate, from a distribution π. If
this is straightforward, fine (see e.g. IS II for simulation) – but it may not
be. In this case, the method of MCMC is to find a Markov chain X = (Xn)
with π as its limit distribution. Then we can run the chain, knowing that
its distribution for large n will approximate π. How long we have to wait
for the approximation to be good enough for our purposes depends on the
transition matrix P of the chain – and in particular, on its spectral gap.
Note. The two most important developments in Statistics in recent decades
have been MCMC and wavelets.

4. Finite and infinite chains
Finite chains have special and useful properties.

Theorem. For a finite Markov chain, it is impossible for all states to be
transient: a finite chain must contain at least one persistent state.

Proof. If the state-space is {1, . . . , N}, for each i and each n

1 =
N∑
j=1

pij(n). (a)

Let n → ∞: if j is transient, the total expected time in it is finite:
∑

n pij(n) <
∞. So

pij(n) → 0 (n → ∞). (b)

If all states were transient, then letting n → ∞ in (a) and using (b) would give
the contradiction 1 = 0. So not all states in a finite chain can be transient. //

Note. 1. An infinite chain can easily consist of only transient states. A trivial
example is walk to the right on the integers: pi,i+1 = 1, with the other pij 0.
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A non-trivial example is given by Pólya’s theorem: simple symmetric ran-
dom walk on the integer lattice Zd is transient for d ≥ 3 (but recurrent for
d = 1, 2). See e.g. [F], XIV.7, [GS], 13.11 p.560.
2. The sum

∑
n pij(n) is the expected total time spent in state j, starting

from i. With only finitely many states, and infinite total time altogether, at
least one of these sums must thus be infinite.

Theorem. A persistent state j in a finite chain is positive (= non-null).

Proof. If the finite chain has state-space {1, . . . , N}, assume there is a null
state. Let C be the equivalence class containing it. Since C is closed, we can
consider the subchain induced on C. Then

1 =
∑
k∈C

pik(n) (finite sum).

Let n → ∞: each pik(n) → 0, so the sum on the RHS → 0, giving 1 = 0.
This contradiction gives the non-existence of null states in a finite chain. //

The restriction to finite chains is essential here: e.g., simple symmetric
random walk on the integers has all states persistent null.

The limit theorem above is due to Kolmogorov in 1936. The algebraic
treatment we have given is in terms of matrices – and in the case of an infinite
chain, these will be infinite matrices. Dealing with infinite rather than finite
matrices is possible (with care, and under suitable conditions) – but belongs
to Functional Analysis rather than to Linear Algebra. Infinite-dimensional
versions of the Perron-Frobenius theorem exist, such as the Krein-Rutman
theorem for positive operators. But this leads beyond the scope of this course.
Continuous state-space

It turns out that, although the language of matrices is so useful in the
above, one can extend much of the treatment above to situations where the
state space is continuous rather than discrete. It turns out also that it is
this case that is most useful in applications, particularly MCMC. For a full
treatment, see e.g. Meyn & Tweedie [MT]. Much of the theory above extends
to the continuous-state case. Again the transience-recurrence dichotomy is
crucial, but there are now various possible types of recurrence. One of the
most important is Harris recurrence (T. E. HARRIS (1919-2005) in 1956).
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