pfsl24(14).tex

Lecture 24. 2.12.2014 (half-hour – Problems)

Martingale convergence

One reason why martingales (mgs) are so useful is that they have good convergence properties – under suitable conditions. We state some of the key results, without proof; for details, see e.g. SP, L18-19.

Call $X = (X_n)$ L_1 -bounded if $\sup_n E[|X_n|] < \infty$, i.e.

$$E[|X_n|] \le K$$
 for all n ,

for some constant K.

Doob's (Sub-)Martingale Convergence Theorem. An L_1 -bounded (sub)martingale is a.s. convergent.

The proof depends on Doob's Upcrossing Inequality (see e.g. SP L18).

Uniform integrability (UI). Call X_n uniformly integrable (UI) if

$$\sup_{n} \int_{\{|X_n| > a\}} |X_n| dP \to 0 \qquad (a \to \infty).$$

If the index set $\{1, 2, ...\}$ of the filtration (\mathcal{F}_n) extends to $\{1, 2, ..., \infty\}$ so that $\{X_n : n = 1, 2, ..., \infty\}$ is a (sub-)mg w.r.t. this filtration, the (sub-)mg is called *closed*, with *closing* (or *last*) element X_{∞} .

Theorem. Let (X_n) be a UI submg. Then $\sup_n E[X_n^+] < \infty$, and X_n converges to a limit X_∞ a.s. and in L_1 , which closes the submg: $X = (X_n)$ is a closed submg, closed by X_∞ .

Theorem. X_n is a UI mg iff X_n is a closed mg iff there exists $Y \in L_1$ with

$$X_n = E[Y|\mathcal{F}_n].$$

Then $X_n \to E[Y|\mathcal{F}_{\infty}]$ a.s. and in L_1 .

Corollary (UI Mg Convergence Theorem). For a mg $X = (X_n)$, the following are equivalent:

(i) X is UI;

- (ii) X converges a.s. and in L_1 (to X_{∞} , say);
- (iii) X is closed by a random variable Y: $X_n = E[Y|\mathcal{F}_n]$;
- (iv) X is closed by its limit X_{∞} : $X_n = E[X_{\infty}|\mathcal{F}_n]$.
- Note. 1. The UI mgs equivalently by above the closed mgs (also called regular mgs) are the 'nice' mgs. Note that all the randomness is in the closing rv $Y = X_{\infty}$. As time progresses, more of Y is revealed as more information becomes available. (Think of progressive revelation, as in choose your metaphor a 'striptease', or, 'the Day of Judgement'.)
- 2. UI (or closed) mgs are also common, and crucially important in Mathematical Finance. There, one does two things: (i) discount all asset prices (so as to work with real rather than nominal prices); (ii) change from the real-world probability measure P to an equivalent martingale measure Q (EMM, or risk-neutral measure) under which discounted asset prices \tilde{S}_t become (Q)-mgs:

$$\tilde{S}_t = E_Q[\tilde{S}_T | \mathcal{F}_t]$$

 $(T < \infty \text{ is e.g. the expiry time of an option})$. See e.g. [BK], esp. Ch. 4. Matters are simpler in the L_p case for $p \in (1, \infty)$. Call $X = (X_n)$ L_p -bounded if

$$\sup_n ||X_n||_p < \infty$$

(so in particular each $X_n \in L_p$). We may take p=2 for simplicity, and because of the link with Hilbert-space methods and the important *Kunita-Watanabe Inequalities*. We quote (for proof see e.g. SP L19)

Theorem (L_p -Mg Theorem). If p > 1, an L_p -bounded mg X_n is UI, and converges to its limit X_{∞} a.s. and in L_p .

3. Martingales in continuous time

A stochastic process $X = (X(t))_{0 \le t < \infty}$ is a martingale (mg) relative to $(\{\mathcal{F}_t\}, P)$ if

- (i) X is adapted, and $E|X(t)| < \infty$ for all $\leq t < \infty$;
- (ii) $E[X(t)|\mathcal{F}_s] = X(s) \ P$ a.s. $(0 \le s \le t)$,

and similarly for submgs (with \leq above) and supermgs (with \geq).

In continuous time there are regularization results, under which one can take X(t) RCLL in t (basically $t \to EX(t)$ has to be right-continuous). Then the analogues of most results for discrete-time martingales hold true.