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Lecture 26. 9.12.2014
Markov property (continued).

That is, if you know where you are (at time t), how you got there doesn’t
matter so far as predicting the future is concerned. Equivalently, the Markov
property says that past and future are conditionally independent given the
present. X is said to be strong Markov if this holds with the fixed time t
replaced by a stopping time τ (a random variable). This is a real restriction
of the Markov property in the continuous-time case (though not in discrete
time). Perhaps the simplest example of a Markov process that is not strong
Markov is

X(t) := 0 (t ≤ τ), t− τ (t ≥ τ),

with τ exponentially distributed. Then X is Markov (from the lack of mem-
ory property of the exponential distribution), but not strong Markov (the
Markov property fails at the stopping time τ). The strong Markov property
to fail in cases, as here, when ‘all the action is at random times’. Another
example of a process Markov but not strong Markov is a left-continuous Pois-
son process – obtained by taking a Poisson process and making its paths left-
rather than right-continuous.
Diffusions

A diffusion is a path-continuous strong Markov process such that for each
time t and state x the following limits exist:

µ(t, x) := limh↓0
1

h
E[(X(t+ h)−X(t))|X(t) = x],

σ2(t, x) := limh↓0
1

h
E[(X(t+ h)−X(t))2|X(t) = x].

Then µ(t, x) is called the drift, σ2(t, x) the diffusion coefficient.
The term diffusion derives from physical situations involving Brownian

motion. The mathematics of heat diffusing through a conducting medium
(which goes back to Fourier in the early 19th century) is intimately linked
with Brownian motion (the mathematics of which is 20th century).

The theory of diffusions can be split according to dimension. In one
dimension, there are a number of ways of treating the theory. In higher di-
mension, there is basically one way: via the stochastic differential equation
methodology (or its reformulation in terms of a martingale problem). This
shows the best way to treat the one-dimensional case: the best method is the
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one that generalizes. It also shows that Markov processes and martingales, as
well as being the two general classes of stochastic process with which one can
get anywhere mathematically, are also intimately linked technically. We will
encounter diffusions largely as solutions of stochastic differential equations.

VI. LÉVY PROCESSES
1. Brownian motion

Brownian motion originates in work of the botanist Robert Brown in 1828.
It was introduced into finance by Louis Bachelier in 1900, and developed in
physics by Albert Einstein in 1905.

The fact that Brownian motion exists is quite deep, and was first proved
by Norbert WIENER (1894–1964) in 1923. In honour of this, Brownian
motion is also known as the Wiener process, and the probability measure
generating it – the measure P ∗ on C[0, 1] (one can extend to C[0,∞)) by

P ∗(A) = P (W. ∈ A) = P ({t → Wt(ω)} ∈ A)

for all Borel sets A ∈ C[0, 1] – is called Wiener measure.

Definition. A stochastic processX = (X(t))t≥0 is a standard (one-dimensional)
Brownian motion, BM or BM(R), on some probability space (Ω,F ,P), if
(i) X(0) = 0 a.s.,
(ii)X has independent increments: X(t+u)−X(t) is independent of σ(X(s) :
s ≤ t) for u ≥ 0,
(iii) X has stationary increments: the law of X(t + u)−X(t) depends only
on u,
(iv) X has Gaussian increments: X(t + u) − X(t) is normally distributed
with mean 0 and variance u, X(t+ u)−X(t) ∼ N(0, u),
(v) X has continuous paths: X(t) is a continuous function of t, i.e. t →
X(t, ω) is continuous in t for all ω ∈ Ω.

We can relax path continuity in (v) by assuming it only a.s.; we can then
get continuity by excluding a suitable null-set from our probability space.

We denote standard Brownian motion BM(R) by W = (W (t)) (W
for Wiener), though B = (B(t)) (B for Brown) is also common. Stan-
dard Brownian motion BM(Rd) in d dimensions is defined by W (t) :=
(W1(t), . . . ,Wd(t)), where Wi are independent copies of BM(R).

We turn next to Wiener’s theorem, on existence of Brownian motion.
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Theorem (Wiener, 1923). Brownian motion exists.
The proof is not examinable, and is on the handout (cf. [BK], 5.3.1; SP

L20-22). It gives the Paley-Wiener-Zygmund (PWZ) construction of 1933,
and is a streamlined version of the classical one due to Lévy in his book of
1948 and Cieselski in 1961. It formalises in the modern language of wavelets
Lévy’s broken-line construction.
2. Poisson process; compound Poisson processes
Exponential Distribution

A random variable T is said to have an exponential distribution with rate
λ, or T ∼ E(λ), if

P (T ≤ t) = 1− e−λt for all t ≥ 0.

Recall E(T ) = 1/λ and var(T ) = 1/λ2. Further important properties are:
(i) Exponentially distributed random variables possess the ‘lack of memory’
property: P (T > s+ t|T > t) = P (T > s) (below).
(ii) Let T1, T2, . . . Tn be independent exponentially distributed random vari-
ables with parameters λ1, λ2, . . . , λn resp. Then min{T1, T2, . . . , Tn} is expo-
nentially distributed with rate λ1 + λ2 + . . .+ λn.
(iii) Let T1, T2, . . . Tn be independent exponentially distributed random vari-
ables with parameter λ. Then Gn = T1 + T2 + . . . + Tn has a Gamma(n, λ)
distribution. That is, its density is

P (Gn = t) = λe−λt(λt)n−1/(n− 1)! for t ≥ 0.

The Poisson Process
Definition. Let t1, t2, . . . tn be independent exponential E(λ) random vari-
ables, Tn := t1,+ . . .+ tn for n ≥ 1, T0 = 0, N(s) := max{n : Tn ≤ s}.
Interpretation: Think of ti as the time between arrivals of events, then Tn is
the arrival time of the nth event and N(s) the number of arrivals by time
s. Then N(s) has a Poisson distribution with mean λs. The Poisson process
can also be characterised via

Theorem. If {N(s), s ≥ 0} is a Poisson process, then
(i) N(0) = 0,
(ii) N(t+ s)−N(s) is Poisson P (λt), and
(iii) N(t) has independent increments.
Conversely, if (i),(ii) and (iii) hold, then {N(s), s ≥ 0} is a Poisson process.
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The above characterization can be used to extend the definition of the
Poisson process to include time-dependent intensities. We say that {N(s), s ≥
0} is a Poisson process with rate λ(r) if
(i) N(0) = 0,
(ii) N(t+ s)−N(s) is Poisson with mean

∫ t

s
λ(r)dr, and

(iii) N(t) has independent increments.
Compound Poisson Processes

We now associate i.i.d. random variables Yi with each arrival and consider

S(t) = Y1 + . . .+ YN(t), S(t) = 0 if N(t) = 0.

Theorem. Let (Yi) be i.i.d. and N be an independent nonnegative integer
random variable, and S as above.
(i) If E(N) < ∞, then E(S) = EX(N).E(Y1).
(ii) If E(N2) < ∞, then var(S) = E(N).var(Y1) + var(N)(E(Y1))

2.
(iii) If N = N(t) is Poisson(λt), then var(S) = tλ(E(Y1))

2.

A typical application in the insurance context is a Poisson model of claim
arrival with random claim sizes.
Renewal Processes

Suppose we use components – light-bulbs, say – whose lifetimesX1, X2, . . .
are independent, all with law F on (0,∞). The first component is installed
new, used until failure, then replaced, and we continue in this way. Write

Sn :=
n∑
1

Xi, Nt := max{k : Sk < t}.

Then N = (Nt : t ≥ 0) is called the renewal process generated by F ; it is a
counting process, counting the number of failures seen by time t.

The law F has the lack-of-memory property iff the components show no
aging – that is, if a component still in use behaves as if new. The condition
for this is

P (X > s+ t|X > s) = P (X > t) (s, t > 0),

or
P (X > s+ t) = P (X > s)P (X > t).

Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0).

4


