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Lecture 29. 16.12.2014 (Problems here and in Lecture 30)
Example. The Stable Subordinator.

Here d = 0,Φ(s) = sα, (0 < α < 1),

µ(dx) = dx/(Γ(1− α)xα−1)

(in one normalization, the one convenient here). The special case α = 1/2
is particularly important: this arises as the first-passage time of Brownian
motion over positive levels, and gives rise to the Lévy density (see Problems).
Classification.
IV (Infinite Variation). The sample paths have infinite variation on finite
time-intervals, a.s. This occurs iff

σ > 0 or

∫
min(1, |x|)µ(dx) = ∞.

So take σ = 0 below.
FV (Finite Variation, on finite time-intervals, a.s.).∫

min(1, |x|)µ(dx) < ∞.

IA (Infinite Activity). Here there are infinitely many jumps in finite time-

intervals, a.s.: µ has infinite mass, equivalently
∫ 1

−1
µ(dx) = ∞: µ(R) = ∞.

FA (Finite Activity). Here there are only finitely many jumps in finite time,
a.s., and we are in the compound Poisson case: µ(R) < ∞.
Stable processes. Note that all stable processes have infinite activity, as∫
dx/|x|1+α diverges at the origin since α > 0. As

∫
dx/|x|α diverges at 0 if

α ≥ 1 but converges if 0 < α < 1, stable processes have IV for 1 ≤ σ ≤ 2,
FV for 0 < α < 1 (e.g., the stable subordinator, paths monotone, so FV).
Jitter.

The idea of having infinitely many jumps in finite time seems strange on
first sight (and seemed like Pure Mathematics without hope of application
when I first saw it!). It is now widely used to model jitter. Brownian mo-
tion (continuous) is used to model stock prices in the Black-Scholes model
of Mathematical Finance. Big jumps do occur, e.g. economic shocks in fi-
nance, and claims in insurance. Looked at closely enough, stock prices jump:
they respond to individual trades, which change the current balance of sup-
ply and demand. The prices of heavily traded stocks under normal market
conditions show ‘lots of little jumps’ – jitter – modelled by the IA case above.
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VIII. EXTREME-VALUE THEORY

Usually in Statistics it is the typical reading in a sample that is of interest.
Sometimes, however, it is the largest, or the smallest. For example:
the speed of a convoy is the speed of its slowest ship;
the strength of a chain is the strength of its weakest link;
it is the strongest gust of wind that blows the roof off a building;
it is the biggest claims that pose the greatest threat to the solvency of an
insurance company, etc.
The area of Statistics relevant here is called extreme-value theory (EVT).

We shall focus on the sample maximum

Mn := max{X1, . . . , Xn}

of a (usually large) sample of size n, with Xi iid (for the minimum, work
with −Xi).

The distribution function of Mn is the nth power F n, as

P (Mn ≤ x) = P (Xi ≤ x, . . . , xn ≤ x) = P (X1 ≤ x) . . . P (Xn ≤ x) = F (x)n,

by independence.
This is reminiscent of the theory of stable distributions (III.4), where we

worked instead with sums Sn := X1 + . . .+Xn. There, we took CFs, where
the CF of the sum is the nth power ϕn of the CF ϕ of the Xi. Because of
this, the mathematics here is similar but simpler. We obtain, as with stabil-
ity, a parametric discription of the possible limit laws of (Mn − an)/bn, after
suitable centring and scaling. As with stability, we work to within type; we
now obtain a one-parameter family of limit laws, rather than a two-parameter
family as with stability – the extremal or extreme-value laws. The result is
due to Fisher and Tippett (1928) (L. H. C. TIPPETT (1902-1985)) and B.
V. GNEDENKO (1912-1995) in 1943.

Theorem (Fisher-Tippett theorem), 1928. To within type, the extremal
laws are exactly the following:

Φα, (α > 0); Ψα, (α > 0); Λ,

where
Φα := 0 (x ≤ 0), exp{−x−α} (x ≥ 0);
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Ψα := exp{−(−x)σ} (x ≤ 0), 1 (x ≥ 0);

Λ(x) := exp{−e−x}.
These are known since as the Fréchet (heavy-tailed, Φα), Gumbel (light-

tailed, Λ) and Weibull (bounded tail, Ψα), after Maurice FRÉCHET (1878-
1973), French mathematician, in 1937, Emil Julius GUMBEL (1891-1966),
German statistician, in 1935 and 1958, and Waloddi WEIBULL (1887-1979),
Swedish engineer, in 1939 and 1951.

Particularly for statistical purposes, it is often better to combine these
three into one parametric family, the generalized extreme value (GEV) laws.
These have one extremal parameter α ∈ R and two type parameters µ ∈ R
(location) and σ > 0 (scale):

G(x) := exp
(
−
[
1 + α

(x− µ

σ

)]−1/α)
.

Here α > 0 corresponds to the Fréchet Φα, α = 0 to the Gumbel Λ (using
(1 + x/n)n → ex as n → ∞) and α < 0 to the Weibull Ψα, and we restrict
to the support of G in each case – the set where [...] above > 0. See Coles
[Col] for a monograph treatment of the statistics of EVT.

As always, the bigger n, the better. But in EVT, there are two conflicting
dangers. We are studying the extremes, and most readings are not extreme –
so we exclude most readings. Exclude too many, and we have too little data
left; exclude too few, and we bias things by including non-extremes. We can
balance these two dangers by the peaks over thresholds (POT) method ([Col]
Ch. 4). Here we select a high threshold u. Then the conditional distribution
of X − u|X > u is approximately the generalized Pareto distribution (GPD)

H(x) := 1−
(
1 +

αx

σ̄

)−1/α

, σ̄ := σ + α(u− µ) (x > 0, (1 + αx/σ̄)) > 0

(Vilfredo PARETO (1848-1923): distribution of income, 1909).
Which F lead to which extremal law or GEV (the set of such F is called

the domain of attraction of the limit law) can be answered. It is analogous to
the corresponding domain-of-attraction problem for stable laws (III.4). Both
involve regular variation, an important topic that we must omit here.

Point-process methods (as in Ppp(λ), VI.2) are important in POT; see
[Col] Ch. 7. The theory also extends to many (including infinitely many) di-
mensions. For these, other extensions, and applications to insurance, finance
etc., see e.g. [Col]. NHB
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