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2. Normal N(0, 1). This has MGF

M(t) =
1√
2π

∫
exp{tx− 1

2
x2}dx

=
1√
2π

∫
exp{−1

2
(x− t)2 +

1

2
t2}dx (completing the square)

= exp{1
2
t2}. 1√

2π

∫
exp{−1

2
u2}du (u := x− t)

= exp{1
2
t2} (normal density).

This holds for all t, real or complex. So here we have R = ∞, and M is
entire.
CFs
Definition. The characteristic function (CF) of a random variable X is

ϕ(t), or ϕX(t), := E[eitX ],

where here t is real and i :=
√
−1.

Note. 1. The notation here (which is standard) clashes with our use of ϕ(x)
as the standard normal density. But which is meant will be clear, both from
context and from the use of x or t for the argument.
2. The substantial change is from the real exponential etX to the complex
exponential eitX . Complex numbers are met later than real numbers, and
Complex Analysis later than Real analysis. But:
(a) A knowledge of Complex Analysis is essential in Mathematics, so there
is no point in trying to avoid it (everything we need, and much more, is on
my website under M2P3);
(b) Some parts of Real Analysis – the most relevant to us being the theory of
power series (Maclaurin or Taylor series, above) – actually belong to Com-
plex Analysis, as they canot be understood except in a complex setting.
Properties of CFs. The CF has a number of important properties.
1. Existence. The CF always exists (the integral defining it always con-
verges). Indeed,

|ϕ(t)| = |
∫

eitxdF (x)| ≤
∫

|eitx|dF (x) =

∫
1dF (x) = 1.
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This property – existence of the CF, everywhere – is extremely important,
and useful. This advantage vastly outweighs any inconvenience resulting from
the use of complex numbers, even if these are initially unfamiliar.
2. Continuity. The CF is continuous, indeed uniformly continuous:

|ϕ(t+ u)− ϕ(t)| = |
∫

eitx(eitu − 1)dF (x)| ≤ |eitu − 1|
∫

1dF (x)

= |eitu − 1| → 0 (u → 0).

3. Uniqueness. The CF determines the distribution function uniquely (so
taking the CF loses no information). This is a general property of Fourier
transforms; we quote this.
4. Inversion formula. There is an inversion formula (due to Lévy, 1937)
giving the distribution function in terms of the CF. We omit this, as the
formula is rarely useful.
5. Continuity theorem (Lévy, 1937). (i) If Fn, F have CFs ϕn, ϕ, and Fn → F
in distribution (see III.1 below), then

ϕn(t) → ϕ(t) (n → ∞) uniformly in t on compact sets.

(ii) Conversely, if ϕn(t) → ϕ(t) pointwise, and the limit function ϕ(t) is
continuous at t = 0, then ϕ is the CF of a distribution function, F say, and
Fn → F in distribution.
6. Moments. For a random variable X, the kth moment of X is defined by

µk := E[Xk].

The first moment is the mean or expectation, µ = E[X]. (We use notation
such as µX if there are other random variables present. Context will show
whether µ denotes a mean or a measure.) If X has k moments (finite),
we can expand the exponential eitX in the definition of the CF and get∑k

j=0(it)
j.E[Xj]/j! or

∑k
j=0(it)

jµj/j!, plus an error term. Analogy with
Taylor’s Theorem in Real Analysis suggests that this error term should be
o(tk) at t → 0. This is true; we quote it: if X has k moments finite, its CF
satisfies

ϕ(j)(0) = ijµj (j = 0, 1, . . . , k), ϕ(t) =
k∑

j=0

(it)jµj/j! + o(tk) (t → 0).
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7. Convolutions. As with the MGF (when it exists!): for X, Y independent,

ϕX+Y (t) = ϕX(t).ϕY (t)

– the CF of an independent sum is the product of the CFs. Thus addition of
independent random variables (easy) corresponds to convolution of distribu-
tions (and this involves an integration – awkward, if repeated many times),
but to multiplication of CFs (or MGFs) – easy.
Examples.
1. N(0, 1). By above, the MGF is e

1
2
t2 . Formally replacing t by it here, this

suggests that the CF is e−
1
2
t2 :∫ ∞

−∞
eitx.

e−
1
2
x2

√
2π

dx = e−
1
2
t2 .

This is in fact true, and the above argument works. This is because the MGF
is entire (analytic everywhere), and we can use analytic continuation.

An alternative argument proves the above by using Cauchy’s Theorem
(see e.g. [BF] p.21, or M2P3 L1 and 26-27).
1a. N(µ, σ2). This has CF exp{iµt− 1

2
σ2t2}. For, if X ∼ N(µ, σ2),

(X − µ)/σ ∼ N(0, 1), so

E[eit(X−µ)/σ] = e−
1
2
t2 : E[eit(X−µ)] = e−

1
2
σ2t2 ; E[eitX ] = eiµt−

1
2
σ2t2 .

ϕ′(t) = (iµ− σ2t)ϕ(t), ϕ′(0) = iµ = iE[X] : E[X] = µ.

So var(X) = E[(X − µ)2]; X − µ has CF ϕ0(t) = e−
1
2
σ2t2 . As

ϕ′
0(t) = −σ2te−

1
2
σ2t2 , ϕ′′

0(t) = −σ2e−
1
2
σ2t2 − σ2te−

1
2
σ2t2 ,

ϕ′′
0(0) = −σ2, = −E[(X − µ)2] = −var(X) : var(X) = σ2.

2. χ2(n). The MGF is 1/(1−2t)
1
2
n in t < 1

2
, and this extends to the half-plane

Re t < 1
2
in the complex t-plane. By analytic continuation, this is enough

to give the CF as 1/(1− 2it)
1
2
n for all real t. Observe how the singularity in

the MGF is avoided in the CF!
3. Cauchy distribution. Here

f(x) =
1

π(1 + x2)
.
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The mean does not exist! (The integral
∫
xf(x)dx diverges logarithmically,

so does not exist as a Lebesgue integral. So the mean does not exist – despite
the symmetry, which means that the median and mode both exist and are
0.) One can show (Problems) that the CF is

ϕ(t) =

∫ ∞

−∞

eixt

π(1 + x2)
dx = e−|t|.

This is not differentiable at 0 – reflecting the non-existence of the mean, by
Property 6 above on moments.
4. Symmetric exponential distribution, SE(x). Here

f(x) =
1

2
e−|x|.

This has CF (Problems)

ϕ(t) =

∫ ∞

−∞
eixt.

1

2
e−|x|dx = 1/(1 + t2).

Note. 1. The CF is the Fourier transform of the density, when this exists
(and the Fourier-Stieltjes transform of the distribution function, in general.

The MGF is related to the Laplace transform (or Laplace-Stieltjes trans-
form), where one has e−xt in place of ext. These integral transforms are useful,
and widely used; you may have met them already.
2. Notice the similarity between the last two examples! Apart from a factor
of 2π, it looks as if we are ‘Fourier transforming twice and getting back to
where we started’. This is indeed the case, and is an instance of a general
result, the Fourier Integral Theorem.
Higher dimensions

In n dimensions, the arguments x, t of the density and MGF or CF are
both n-vectors – column-vectors, say. We replace eixt, etc. by eit

T x, using the
superscript T for ‘transpose’. Thus tT is a row-vector, and tTx is a scalar.
The theory goes through as before. We will return to this later in connection
with the very important multivariate normal (multinormal) distribution.
PGFs

We often meet random variables X which take only non-negative integer
values. The distribution is then specified by

pn := P (X = n), n = 0, 1, . . . ;
∞∑
n=0

pn = 1.
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