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We form the probability generating function (PGF)

P (s), or PX(s), := E[sX ] =
∞∑
n=0

snP (X = n) =
∞∑
n=0

pns
n.

This is a power series in s, and since
∑

pn = 1, it converges for s = 1. So
the radius of convergence R is at least 1.

If R > 1, P (s) is analytic (= holomorphic) at s = 1, so we may differen-
tiate termwise:

P ′(s) =
∞∑
n=1

nsn−1pn; P ′′(s) =
∞∑
n=2

n(n− 1)sn−2pn.

Taking s = 1:

P ′(1) =
∑

npn =
∑

nP (X = n) = E[X];

P ′′(1) =
∑

n(n− 1)pn =
∑

n(n− 1)P (X = n) = E[X(X − 1)],

etc. (the right-hand sides are called the factorial moments of X; they deter-
mine the moments, and vice versa). Thus

E[X] = P ′(1)];

var(X) = E[X2]− (E[X])2 = E[X(X − 1)] + E[X]− (E[X])2

= P ′′(1) + P ′(1)− [P ′(1)]2.

This gives the mean and variance in terms of the first two derivatives of
the PGF, in the case R = 1. We quote that these formulae still hold even if
R = 1. This depends on Abel’s Continuity Theorem from Analysis; we omit
this.
Convolution.

Just as with MGFs and CFs: the PGF of an independent sum is the
product of the PGFs.
Random sums.

If we have a random sum – a sum X1 + . . .+XN of a random number N
of iid random variables Xi, where the Xi have PGF P (s) and N is indepen-
dent of the Xi with PGF Q(s) – then X1 + . . .+XN has PGF Q(P (s)), the
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functional composition of P and Q. This result is very useful in the study
of branching processes, which model the growth of biological populations (or
chain reactions in Physics, Chemistry etc.); see Problems 10 Q3.

III. CONVERGENCE and LIMIT THEOREMS
1. Modes of convergence.

In Analysis, we deal with convergence and limits all the time, but in
Probability Theory we have to modify our requirements.
Example: Coin tossing. Consider repeated (independent) tosses of a fair
coin (outcomes iid Bernoulli B(1

2
)). What can we say about the long-run

behaviour of the observed frequency to heads to date? The man/woman in
the street will say, ”tends to a half – Law of Averages”. There is much good
sense in this, and we will prove a theorem that says just this, but subject to
a qualification, that turns out to be inevitable.

The coin can fall tails (frequency of heads 0; pr 1
2
). So it can fall tails 10

times (frequency of heads 0; pr 2−10); 100 times (frequency 0; pr 2−100), etc.
Such highly exceptional behaviour is certainly very unusual (highly unlikely
– and we can say exactly how unlikely). In the limit, we would expect the
probability of this or any other aberrant behaviour to tend to 0, and it does.
The fact remains that the limit of 0 is 0, and not the 1

2
occurring in the Law

of Averages.
Because of such examples, the best we can hope for is the following.

Definition. We say that random variables Xn, n = 1, 2, . . ., converge to X
almost surely (a.s.), or with probability 1 (wp1), if

P (Xn → X (n → ∞)) = 1,

and write
Xn → X a.s.

This is one of our two strong modes of convergence. For the other:
Definition. For p ≥ 1, Xn converges to X in pth mean, or in Lp, if

E[|Xn −X|p] → 0 (n → ∞)

(L for Lebesgue, p for pth power). The two most important cases for us are
p = 1 – convergence in mean, or in L1, and p = 2 – convergence in mean
square, or in L2.

We quote (see e.g. [GS], 7.2): if 1 ≤ p ≤ r,
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(a) Lr ⊂ Lp [true in any finite measure space, but not in general];
(b) convergence in rth mean implies convergence in pth mean
[as expected: the higher the moment, the more restrictive the condition].

Neither of these two strong modes of convergence implies the other.
Definition. We say that Xn → X in probability (in pr) if for all ϵ > 0,

P (|Xn −X| > ϵ) → 0 (n → ∞).

This is a mode of convergence of intermediate strength. Each of the two
strong modes above implies it, but not conversely.

There is a partial converse, due to F. Riesz: if Xn → X in probability,
there is a subsequence along which Xn → X a.s.

Finally, we have a (very useful but) weak mode of convergence.
Definition. Xn → X in distribution if

E[f(Xn)] → E[f(X)]

for all bounded continuous functions f .
The content of Lévy’s convergence theorem for CFs (II.3 above) is that

such behaviour on the particular functions

f(x) := eitx

for t real suffices here.
As the names suggest, the intermediate mode convergence in probability

implies the weak mode convergence in distribution, but not conversely.
Metrics and completeness.

Recall that a metric d = d(., .) is a distance function, generalising that
in Euclidean space. Some but not all metrics are generated by norms ∥.∥,
again as in Euclidean space:

d(x, y) = ∥x− y∥.

Recall a sequence {sn} is called Cauchy if it satisfies the Cauchy condition

∀ϵ > 0 ∃N s.t. ∀m,n ≥ N, |sm − sn| < ϵ,

and convergent to s if

∀ϵ > 0 ∃N s.t. ∀n ≥ N, |sn − s| < ϵ.
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Convergence implies the Cauchy condition (by the triangle inequality). The
converse is true for the reals R (Cauchy’s General Principle of Convergence),
and similarly for the complex plane C, but false for the rationals Q. We call
a metric space complete if every Cauchy sequence is convergent; thus R, C
are complete, but Q not.

Convergence in pth mean (or in Lp) is metric, and generated by the Lp-
norm:

∥X∥p := (E[|X|p])1/p.
By the Riesz-Fischer theorem, the Lp-spaces are complete.

Convergence in probability is also given by a metric:

d(X, Y ) := E
( |X − Y |
1 + |X − Y |

)
.

This metric is also complete.
Convergence in distribution is also generated by a metric, the Lévy metric:

d(F,G) := inf{ϵ > 0 : F (x− ϵ)− ϵ ≤ G(x) ≤ F (x+ ϵ) + ϵ for all x}
(the French probabilist Paul LÉVY (1886-1971) in 1937) (it is not obvious,
but it is true, that d is a metric): if Fn, F are distribution functions,

Fn → F in distribution ⇔ d(Fn, F ) → 0.

This is also equivalent to

Fn(x) → F (x) (n → ∞) at all continuity points x of F .

The restriction to continuity points x of F here is vital: take Xn, X as con-
stants cn, c with cn → c. We should clearly have cn → c in distribution
regarded as random variables; the distribution function F of c is 0 to the left
of c and 1 at c and to the right; pointwise convergence takes place everywhere
except c (the only interesting point here).

We quote that the Lévy metric is complete.
Egorov’s theorem; almost uniform convergence. We quote (D. F. EGOROV
(1869-1931) in 1911)
Egorov’s theorem. If Xn → Z a.s., then for all ϵ > 0 there exists a set of
probability < ϵ off which Xn → X uniformly (in ω). This property is called
almost uniform convergence. So Egorov’s theorem states that almost sure
and almost uniform convergence are equivalent.

It follows from this that almost sure convergence (‘strong’) implies con-
vergence in probability (‘intermediate’), as above.
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