pfsprob9.tex

PROBLEMS 9 9.12.2014

Q1 Properties of conditional expectation.

(i) For \mathcal{B} the trivial σ -field $\{\emptyset, \Omega\}$, show that $E[Y|\mathcal{B}] = E[Y]$. (Interpretation: a conditional expectation knowing nothing is the same as an unconditional expectation.)

(ii) For \mathcal{B} the whole σ -field \mathcal{A} , show that $E[Y|\mathcal{B}] = Y$. (Interpretation: given the whole σ -field \mathcal{A} , we know everything, so no randomness remains to average over, so taking the conditional expectation changes nothing.)

(iii) If Y is \mathcal{B} -measurable, show that $E[Y|\mathcal{B}] = Y$.

(iv) (Tower property). Show that if $\mathcal{C} \subset \mathcal{B}$, then $E[E[Y|\mathcal{B}] | \mathcal{C}] = E[Y|\mathcal{C}]$.

(iv') (Tower property'). Show that if $\mathcal{C} \subset \mathcal{B}$, then $E[E[Y|\mathcal{C}] | \mathcal{B}] = E[Y|\mathcal{C}]$.

Q2 Time-inversion for Brownian motion. For B Brownian motion, and X defined for $t \neq 0$ by

$$X_t := tB(1/t)$$

show that X is again Brownian motion (we say X is obtained from B by *time-inversion*).

Hence or otherwise show that

$$B(t)/t \to 0$$
 a.s. $(t \to \infty)$.

Q3. Brownian bridge X is defined for $t \in [0, 1]$ and B BM by

$$X_t := B_t - tB_1.$$

Show that X is Gaussian with mean 0 and covariance $\min(s, t) - st$.

NHB