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SOLUTIONS 7 2.12.2014

Q1: Hypergeometric distribution. (i) The number of subsets of size n of a

set of size 2n is
(
2n
n

)
. If this subset contains k white balls, these can be

chosen in
(
n
k

)
ways; the remaining n − k balls are black, and can be chosen

in
(

n
n−k

)
=
(
n
k

)
ways, giving

(
n
k

)2
ways altogether; sum over k.

(ii) ∑
i

(
2n

i

)
xi = (

∑
j

(
n

j

)
xj)(

∑
k

(
n

k

)
xk).

Extracting the coefficient of xn gives
(
2n
n

)
on the left and

∑
j

(
n
j

)(
n

n−j

)
=∑

j

(
n
j

)2
on the right.

(iii) The number of routes from the vertex to the central element in row 2n

is
(
2n
n

)
. There are

(
n
k

)
routes from the vertex to the element

(
n
k

)
in row n.

By symmetry of the ”square” with top corner the vertex and bottom corner(
2n
n

)
about its horizontal diagonal, the number of routes from

(
n
k

)
to
(
2n
n

)
is(

n
k

)
. So there are

(
n
k

)2
routes passing through

(
n
k

)
; sum over k.

Q2: Bernoulli-Laplace urn. With π the hypergeometric distribution given
(this is a probability distribution, by Q1),

πipi,i+1 =
1(
2d
d

)(d
i

)2

.
(d− i

d

)2
=

1(
2d
d

)(d− 1

i

)2

,

and similarly

πi+1pi+1,i =
1(
2d
d

)( d

i+ 1

)2

.
(i+ 1

d

)2
=

1(
2d
d

)(d− 1

i

)2

,

proving detailed balance, and so reversibility. Assuming reversibility, we can
use detailed balance to calculate the invariant distribution:

πi =
π0(
1
d

)2 .
(
1− 1

d

)2
(
2
d

)2 . . . . .

(
1− i−1

d

)2
(
i
d

)2 = π0.
(d(d− 1) . . . (d− i+ 1))2

(1.2 . . . .i)2
= π0

(
d

i

)2

.
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Then
∑

i πi = 1 gives

π0

∑
i

(
d

i

)2

= π0

(
2d

d

)2

= 1, π0 = 1/

(
2d

d

)
, πi =

(
d

i

)2

/

(
2d

d

)
. //

Q3: Bernoulli-Laplace urn (continued). πi = 1/µi by the Erdös-Feller-
Pollard theorem (L19), so

µ0 = 1/π0 =

(
2d

d

)
.

By Stirling’s formula,

µ0 ∼
√
2πe−2d2d2d+

1
2

(
√
2πe−ddd+

1
2 )2

=
4d√
πd

.

Now as d is already very large (of the order of Avogadro’s number 6× 1023),
4d is astronomically vast – effectively infinite.

The interpretation of this in Statistical Mechanics is that µ0 is the mean
recurrence time of state 0, when all the 2d gas molecules are in one half of
the container. Although this state is certain to recur (indeed, infinitely of-
ten), its mean recurrence time is so vast as to be effectively infinite – which
explains why we do not see such states recurring in practice! This reconciles
the theoretical reversibility of the model with the irreversible behaviour we
observe when gases diffuse, etc. This was the Ehrenfests’ motivatioon for
their model, in 1912.
Note. Relevant here is the concept of entropy – a measure of disorder. This
was introduced by Rudolf CLAUSIUS (1922-1888), in 1865, who formulated
the Fist Law of Thermodynamics (Law of Conservation of Energy) and Sec-
ond Law of Thermodynamics (entropy increases – things become more dis-
ordered):
1. Die Energie der Welt ist konstant (The energy of the world [the universe]
is constant).
2. Die Entropie der Welt strebt einem Maximum zu (The entropy of the
world [the universe] strives towards a maximum).

Q4: Branching processes.
(i) Z2 is the sum of a random number, Z1, of independent copies of Z. So

P2(s) := E[sZ2 ] =
∞∑
k=0

E[sZ2 |Z1 = k]P (Z1 = k).
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Now when Z1 = k, Z2 is a sum of k independent copies of Z, each with PGF
P (s), so has (conditional) PGF P (s)k. So

P2(s) =
∞∑
0

pkP (s)k = P (P (s)).

(ii) Similarly, or by induction on n, Zn has PGF Pn.
(iii)

P ′
n(s) = P ′(Pn−1(s)).P

′
n−1(s).

So letting s = 1 (R > 1), or s ↑ 1 (R = 1) and using Abel’s Continuity
Theorem, since Pn−1, being a PGF, has value 1 at 1, P ′

n(1) = P ′(1).P ′
n−1(1) =

µ.P ′
n−1(1), so by induction

P ′
n(1) = µn : E[Zn] = µn.

NHB
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