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Q1.(i) PX+Y (s) =
∑∞

n=0 P (X + Y = n)sn.
P (X + Y = n) =

∑n
k=0 P (X = k, Y = n − k) =

∑n
k=0 P (X = k)P (Y =

n− k), by independence. Substitute, and put j := n− k to get

PX+Y (s) =
∞∑
j=0

∞∑
k=0

P (X = k).P (Y = j).sj.sk

=
∞∑
k=0

P (X = k)sk.
∞∑
j=0

P (Y = j).sj = PX(s).PY (s). [5]

(ii) PX(s) =
∑∞

n=0 e
−λ(λn/n!).sn = e−λ

∑∞
n=0(λs)

n/n!
= e−λ.eλs = e−λ(1−s). [2]

(iii) Combining, PX+Y (s) = e−λ(1−s).e−µ(1−s) = e−(λ+µ)(1−s). So X + Y ∼
P (λ+ µ). [3]
(iv) EX =

∑∞
n=0 n.P (X = n). One can evaluate the sum directly, but the

easiest way to get the sum is to differentiate the generating function and
evaluate it at s = 1 (proof: one can take the d/ds inside the sum; d(sn)/ds =
nsn−1; this gives the factor n on putting s = 1). As d[e−λ(1−s)]/ds =
λe−λ(1−s), this gives EX = λ: the mean of a Poisson random variable is
its parameter (its variance is λ too, but we won’t need this here). Then
E(X + Y ) = EX + EY = λ + µ follows by linearity of expectation E (ex-
pectation is integration, and integration is linear). [6]
(v) X = (Xt) is a Ppp(λ) if for any measurable set A (equivalently, for any
interval A), the number X(A) of points of the point process X in A is Pois-
son distributed with parameter λ|A|, X(A) ∼ P (λ|A|), and the numbers of
points of X in disjoint sets are independent. [3]
(vi) If X ∼ Ppp(λ), Y ∼ Ppp(µ), then for any A, X(A) ∼ P (λ|A|),
Y (A) ∼ P (µ|A|), and these are independent as X, Y are independent. So
(X + Y )(A) ∼ P ((λ + µ)|A|), by (iii). Also, for disjoint sets A, B, X(A),
X(B) are independent as X is Poisson, and similarly so are Y (A), Y (B),
while both X-counts are independent of both Y -counts as X and Y are in-
dependent. Combining, (X + Y )(A) and (X + Y )(B) are independent. This
completes the proof that X + Y is Ppp(λ+ µ). [6]
[Similar seen – Lectures and Problems]
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Q2. (i) r := Sxy/(SxSy), where Sxy := (x− x)(y − y), Sx :=
√
Sxx etc. [2]

ρ := σxy/(σxσy), where σxy := E[(x− Ex)(y − Ey)], σx :=
√
σxx etc. [2]

(ii) For r, consider the quadratic

Q(λ) = λ2 1

n

n∑
1

(xi − x̄)2 + 2λ
1

n

n∑
1

(xi − x̄)(yi − ȳ) +
1

n

n∑
1

(yi − ȳ)2

= λ2(x− x̄)2 + 2λ(x− x̄)(y − ȳ) + (y − ȳ)2

= λ2Sxx + 2λSxy + Syy.

Now Q(λ) ≥ 0 for all λ, so Q(·) is a quadratic which does not change sign.
So its discriminant is ≤ 0 (if it were > 0, there would be distinct real roots
and a sign change). So (“b2 − 4ac ≤ 0”)

s2xy ≤ sxxsyy = s2xs
2
y, r2 := (sxy/sxsy)

2 ≤ 1 : −1 ≤ r ≤ +1. [6]

Similarly for ρ, from

Q(λ) = E[λ2(x− Ex)2 + 2λ(x− Ex)(y − Ey) + (y − Ey)2]

= λ2E[(x− Ex)2] + 2λE[(x− Ex)(y − Ey)] + E[(y − Ey)2]

= λ2σ2
x + 2λσxy + σ2

y .

As before Q(λ) ≥ 0 for all λ, as the discriminant is ≤ 0, i.e.

σ2
xy ≤ σ2

xσ
2
y , ρ := (σxy/σxσy)

2 ≤ 1, −1 ≤ ρ ≤ +1. [6]

(iii) The extremal cases r = ±1 or r2 = 1, have discriminant 0, that is Q(λ)
has a repeated real root, λ0 say. But then Q(λ0) is the sum of squares of
λ0(xi − x̄) + (yi − ȳ), which is zero. So each term is 0:

λ0(xi − x̄) + (yi − ȳ) = 0 (i = 1. . .n).

So all the points (xi, yi) lie on a line through (x̄, ȳ) with slope −λ0. [4]
Similarly, ρ = ±1 iff Q(λ) has a repeated real root λ0. Then

Q(λ0) = E[(λ0(x− Ex) + (y − Ey))2] = 0.

So the random variable λ0(x−Ex)+ (y−Ey) is zero (a.s. – except possibly
on some set of probability 0). So all values of (x, y) lie on a straight line
through the centroid (Ex,Ey) of slope −λ0, a.s. [3]
(iv) From the strong law of large numbers, xy → E[xy] a.s., x2 → E[x2] a.s.,
y2 → E[y2] a.s. So by (i), r → ρ a.s. [2]
[Seen – Problems]
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Q3: Bernoulli-Laplace urn. (i) (1+x)2d ≡ (1+x)d.(1+x)d. Equate coefficients
of xd left and right:(

2d

d

)
=

d∑
i=0

(
d

i

)
.

(
d

d− i

)
=

∑
i

(
d

i

)2

,

so the πi in HG(d) sum to 1, so HG(d) is a probability distribution. [4]
(ii) A chain P = (pij) has detailed balance (DB) w.r.t. π if

πipij = πjpji for all i, j. (DB)

Detailed balance is equivalent to reversibility (in time), and then the π in
(DB) is the limit distribution of the chain. [3]
(iii) For i 7→ i + 1, one more black ball must go into I. So a white (d − i
of these) goes from I to II, and a black (again, d − i of these) from II to I.
Similarly, for i+1 7→ i, a black (i+1 of these) goes from I to II, and a white
(i+ 1 of these) from II to I. For i 7→ i, a black from I is interchanged with a
black from II, or a white with a white (pr. i(d− i)/d2 each). So

pi,i+1 =
(d− i

d

)2

, pi,i−1 =
( i

d

)2

, pi,i = 2i(d− i)/d2,

pij = 0 (j ̸= i, i± 1). [6]

(iv) With P = (pij) as above and π = HG(d),

πipi,i+1 =
1(
2d
d

)(d
i

)2

.
(d− i

d

)2

=
1(
2d
d

)(d− 1

i

)2

,

and similarly

πi+1pi+1,i =
1(
2d
d

)( d

i+ 1

)2

.
(i+ 1

d

)2

=
1(
2d
d

)(d− 1

i

)2

= πipi,i+1,

proving DB, and so reversibility, with π = HG(d) as limit distribution. [6]
(v) πi = 1/µi by the Erdös-Feller-Pollard theorem, so µ0 = 1/π0 =

(
2d
d

)
. [1]

(vi) By Stirling’s formula,

µ0 ∼
√
2πe−2d(2d)2d+

1
2

(
√
2πe−ddd+

1
2 )2

=
4d√
πd

.

Now as d is already very large (of the order of Avogadro’s number 6× 1023),
4d is astronomically vast – effectively infinite. This reconciles microscopic
reversibility with macroscopic irreversibility in Statistical Mechanics. [5]
[Seen – Problems]
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Q4: Brownian motion. (i) Standard Brownian motion B = (Bt) on R
(BM(R), or BM) is defined to:
(a) start at 0, B0 := 0; [1]
(b) have independent stationary Gaussian increments: Bs+t − Bs ∼ N(0, t)
and independent of σ(Bu : 0 ≤ u ≤ s); [1,1,1]
(c) have continuous paths: t 7→ Bt is continuous in t, a.s. [1]
(ii) Mean and covariance. The mean is 0 (by (b) with s = 0). [1]
So the covariance is, with s ≤ t,

cov(Bs, Bt) = E[BsBt] = E[Bs(Bs+(Bt−Bs)] = E[B2
s ]+E[Bs].E[Bt−Bs] = s+0.0 = s,

as var(Bs) = E[B2
s ] = s and using independent increments. Similarly for

t ≤ s. Combining,

E[Bt] = 0, cov(Bs, Bt) = min(s, t). [5]

(iii) Scaling property. For any c > 0, with B BM write

Bc(t) := c−1B(c2t), t ≥ 0.

Then Bc is Gaussian, with mean 0, variance c−2 × c2t = t and covariance

cov(Bc(s), Bc(t)) = c−2E(Bc(s).Bc(t)) = c−2 min(c2s, c2t)

= min(s, t) = cov(B(s), B(t)).

Also Bc has continuous paths, as B does. So Bc has all the properties of
Brownian motion. So, Bc is Brownian motion. [4]
(iv) Local behaviour. Bc is derived from B by Brownian scaling with scale-
factor c > 0. As for each u > 0 (B(ut) : t ≥ 0) = (

√
uB(t) : t ≥ 0) in law,

B is called self-similar with index 1/2. Brownian motion is thus a fractal. A
piece of Brownian path, looked at under a microscope, still looks Brownian,
however much we ‘zoom in and magnify’ – unlike the functions f of calculus,
which begin to look straight, as they have tangents. [3]
(v) Brownian bridgeXt := Bt−tB1 (t ∈ [0, 1]) is Gaussian: it is obtained from
the Gaussian process B by linear operations, and these preserve Gaussianity,
by definition of the multivariate normal distribution. It has mean 0 (as B
does), and covariance

E[XsXt] = E[(Bs−sB1)(Bt−tB1)] = E[BsBt]−tE[BsB1]−sE[BtB1]+stE[B2
1 ]

= min(s, t)−tmin(s, 1)−smin(t, 1)+st = min(s, t)−st−st+st = min(s, t)−st.
[7]

[Seen – lectures and problems – apart from (iii)] NHB
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