PROBABILITY FOR STATISTICS: EXAM SOLUTIONS
2014-15

QL.(i) Pyiy(s) = 2, P(X +Y =n)s"

PX+Y =n)=>] PX=kY=n—-Fk) =), PX=FkPY =
n — k), by independence. Substitute, and put j :=n — k to get

Px.y(s iip k).P(Y = j).s0.s"

- Z P(X = k)s" 3 P(Y = j).57 = Px(s)-P () [5]

(i) Px(s) = T ge MO /nl).s™ = e T2, (As)

=e A.e’\ = e M179), [2]
(iii) Combining, Px,y(s) = e 2179 e7#(1=9) = e*(’\ﬂ”(l’s). So X +Y ~
P+ p). [3]
(iv) EX = Y2 ,n.P(X = n). One can evaluate the sum directly, but the
easiest way to get the sum is to differentiate the generating function and
evaluate it at s = 1 (proof: one can take the d/ds inside the sum; d(s")/ds =
ns"~!: this gives the factor n on putting s = 1). As d[e*17)]/ds =
Ae 21=9)  this gives FX = \: the mean of a Poisson random variable is
its parameter (its variance is A too, but we won’t need this here). Then
E(X+Y)=FEX+ EY = XA+ p follows by linearity of expectation E (ex-
pectation is integration, and integration is linear). [6]
(v) X = (Xy) is a Ppp(A) if for any measurable set A (equivalently, for any
interval A), the number X (A) of points of the point process X in A is Pois-
son distributed with parameter A\|A|, X(A) ~ P(A|4]|), and the numbers of
points of X in disjoint sets are independent. [3]
(vi) If X ~ Ppp(N), Y ~ Ppp(u), then for any A, X(A) ~ P(\A]),
Y(A) ~ P(u|A|), and these are independent as X, Y are independent. So
(X +Y)(A) ~ P((A+ p)|A|), by (iii). Also, for disjoint sets A, B, X(A),
X (B) are independent as X is Poisson, and similarly so are Y (A), Y (B),
while both X-counts are independent of both Y-counts as X and Y are in-
dependent. Combining, (X +Y)(A) and (X + Y')(B) are independent. This
completes the proof that X + Y is Ppp(A + p). [6]
[Similar seen — Lectures and Problems]



Q2. (i) r := Suy/(5:Sy), where Sy = (x —T)(y — ¥), Sy := V/Suw €tc.  [2]
p = 0yy/(0,0,), where 0, 1= E[(x — Ex)(y — EYy)], 0, := /04 etc.  [2]
(ii) For r, consider the quadratic

n

QW) = NS (=2 D - D) - )+ D (i~ 9

1
= N@—-22+2\z—2)(y—9) + (y — 7)?
= A28, 4+ 2\Say + S,y

Now Q(A) > 0 for all A\, so Q(-) is a quadratic which does not change sign.
So its discriminant is < 0 (if it were > 0, there would be distinct real roots
and a sign change). So (“b? — 4ac <0”)

82 < SupSyy = 5257

iy » r? .= (sxy/sxsy)2 <1: —1<r<+1. |[6]

Similarly for p, from
Q) = EN(x—Ex)’+2\z — Ex)(y — Ey) + (y — Ey)’]
= NE[(z — Bx)’]| + 2)E[(z — Ex)(y — Ey)] + E[(y — Ey)’]
No? + 2A04y + 05.
As before Q(A) > 0 for all A, as the discriminant is < 0, i.e.
afcy < aiai, pi=(04y)0.0,)* <1, —1<p<+1. [6]

(iii) The extremal cases r = £1 or 72 = 1, have discriminant 0, that is Q()\)
has a repeated real root, Ay say. But then Q()) is the sum of squares of
Mo(x; — T) + (y; — ), which is zero. So each term is 0:

So all the points (z;,y;) lie on a line through (z,y) with slope — . [4]
Similarly, p = 1 iff Q(\) has a repeated real root Ag. Then

Qo) = E[(Ao(z — Ex) + (y — Ey))*] = 0.

So the random variable A\o(z — Ex) + (y — Ey) is zero (a.s. — except possibly
on some set of probability 0). So all values of (z,y) lie on a straight line

through the centroid (Ex, Fy) of slope —)\, a.s. o [3]
(iv) From the strong law of large numbers, 7y — E[zy] a.s., 22 — E[2”] a.s.,
y2 — E[y?] a.s. So by (i), r — p as. [2]

[Seen — Problems]



Q3: Bernoulli-Laplace wrn. (i) (1+2)%? = (1+2)%.(14+2)?. Equate coefficients
of 2¢ left and right:

(-2 06)-=0)

so the m; in HG(d) sum to 1, so HG(d) is a probability distribution.  [4]
(ii) A chain P = (p;;) has detailed balance (DB) w.r.t. 7 if

TiPij = TPji for all Z,j (DB)

Detailed balance is equivalent to reversibility (in time), and then the 7 in
(DB) is the limit distribution of the chain. [3]
(ili) For i + i + 1, one more black ball must go into I. So a white (d — ¢
of these) goes from I to II, and a black (again, d — i of these) from II to I.
Similarly, for i 4+ 1 + 4, a black (i 4 1 of these) goes from I to II, and a white
(¢ + 1 of these) from II to I. For i — i, a black from I is interchanged with a
black from II, or a white with a white (pr. i(d — ¢)/d* each). So
— N2 i\ 2
Piji+1 = (dd Z) y Pii-1 = (é) , piq = 2i(d— i)/d27

piy =00 #i1+1). [6]

(iv) With P = (p;;) as above and m = HG(d),

——— (Ti)(?)z.(d ; O (21d) (d; 1)2,

d d

and similarly

= L (A 2(”1)2_L =1\ _
Tit1Pi+1i = (Qj) it1) \4 = (Qd) ; = TiPii+1,

d

proving DB, and so reversibility, with 7 = HG(d) as limit distribution. [6]
(v) m; = 1/p; by the Erdés-Feller-Pollard theorem, so g = 1/m = (2;[). 1]
(vi) By Stirling’s formula,
/_27T€—2d(2d)2d+% B 4d
o (V2me—ddits)? Vrd
Now as d is already very large (of the order of Avogadro’s number 6 x 10%3),
44 is astronomically vast — effectively infinite. This reconciles microscopic

reversibility with macroscopic irreversibility in Statistical Mechanics.  [5]
[Seen — Problems]




Q4:  Brownian motion. (i) Standard Brownian motion B = (B;) on R

(BM(R), or BM) is defined to:

(a) start at 0, By := 0; [1]
(b) have independent stationary Gaussian increments: By — Bs ~ N(0,1)
and independent of o(B, : 0 < u < s); [1,1,1]
(c) have continuous paths: ¢ +— B, is continuous in ¢, a.s. [1]
(ii) Mean and covariance. The mean is 0 (by (b) with s = 0). [1]

So the covariance is, with s < ¢,
cov(By, B;) = E[B,B;| = E|By(Bs+(B,—B,)| = E[B}+E|[B,].E[B;—B,] = s+0.0 = s,

as var(Bs) = E[B?] = s and using independent increments. Similarly for
t < 5. Combining,

E[B:] =0, cov(Bs, By) = min(s, t). (5]

(iii) Scaling property. For any ¢ > 0, with B BM write

B.(t) :=c'B(c’t), t>0.
Then B, is Gaussian, with mean 0, variance ¢=2 x ¢*t = t and covariance

cov(B,(s), Be(t)) = ¢ 2E(B.(s).B.(t)) = ¢ ?min(c?s, c*t)

= min(s,t) = cov(B(s), B(t)).
Also B. has continuous paths, as B does. So B, has all the properties of
Brownian motion. So, B, is Brownian motion. [4]
(iv) Local behaviour. B. is derived from B by Brownian scaling with scale-
factor ¢ > 0. As for each u > 0 (B(ut) : t > 0) = (yJuB(t) : t > 0) in law,
B is called self-similar with index 1/2. Brownian motion is thus a fractal. A
piece of Brownian path, looked at under a microscope, still looks Brownian,
however much we ‘zoom in and magnify’ — unlike the functions f of calculus,
which begin to look straight, as they have tangents. [3]
(v) Brownian bridge X; := B,—tB; (t € [0,1]) is Gaussian: it is obtained from
the Gaussian process B by linear operations, and these preserve Gaussianity,

by definition of the multivariate normal distribution. It has mean 0 (as B
does), and covariance

E[X,X,] = E[(B;—sB,)(B;,—tB,)] = E[B,B,|~tE[B,B]—sE[B,B]+stE[ B3]

= min(s, t)—t min(s, 1)—smin(¢, 1)+st = min(s, t)—st—st+st = min(s, t)—st.
7]

[Seen — lectures and problems — apart from (iii)] NHB



