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Lecture 1. 12.10.2015
I. AXIOMATIC PROBABILITY THEORY
1. Length, area and volume. We shall mainly deal with area, as
this is two-dimensional. We can draw pictures in two dimensions, and our
senses respond to this; paper, whiteboards and computer screens are two-
dimensional. By contrast, one-dimensional pictures are much less vivid, while
three-dimensional ones are harder (they need the mathematics of perspec-
tive) – and dimensions higher than four are harder still.
Area.
1. Rectangles, base b, height h: area A := bh.
2. Triangles. A = 1

2
bh.

Proof: Drop a perpendicular from vertex to base; then extend each of the
two triangles formed to a rectangle and use 1. above.
3. Polygons. Triangulate: choose a point in the interior and connect it to
the vertices. This reduces to the sum of areas of triangles; use 2. above.
4. Circles. We have a choice:
(a) Without calculus. Decompose the circle into a large number of equi-
angular sectors. Each is approximately a triangle; use 2. above [the approx-
imation boils down to sin θ ∼ θ for θ small].
(b) With calculus and plane polar coordinates. Use dA = dr.rdθ = rdrdθ:

A =
∫ r

0

∫ 2π

0
rdrdθ =

∫ r

0
rdr.

∫ 2π

0
dθ = 1

2
r2.2π = πr2.

Note. The ancient Greeks [Archimedes] essentially knew integral calculus
– they could do this, and harder similar calculations [volume of a sphere
V = 4

3
πr3; surface area of a sphere S = 4πr2dr, etc.; note dV = Sdr].

What the ancient Greeks did not have is differential calculus [which we
all learned first!] Had they had this, they would have had the idea of velocity,
and differentiating again, acceleration. With this, they might well have got
Newton’s Law of Motion, Force = mass × acceleration. This triggered the
Scientific Revolution. Had this happened in antiquity, the world would have
been spared the Dark Ages and world history would have been completely
different!
5. Ellipses, semi-axes a, b. Area A = πab (w.l.o.g., a > b) [Archimedes].
Proof: cartesian coordinates: dA = dx.dy.
Reduce to the circle case: compress [‘squash’] the x-axis in the ratio b/a [so
dx 7→ dx.b/a, dA 7→ dA.b/a]. Now the area is A = πb2, by 4. above. Now ‘un-
squash’: dilate the x-axis in the ration a/b. So A 7→ A.a/b = πb2.a/b = πab.

1



Fine – what next? We have already used both the coordinate systems to
hand. There is no general way to continue this list.

The only general procedure is to superimpose finer and finer sheets of
graph paper on our region, and count squares (‘interior squares’ and ‘edge
squares’). This yields numerical approximations – which is all we can hope
for, and all we need, in general.

The question is whether this procedure always works. Where it is clearly
most likely to fail is with highly irregular regions that are ‘all edge and no
middle’.

It turns out that this procedure does not always work; it works for some
but not all sets – those whose structure is ‘nice enough’. This goes back to
the 1902 thesis of Henri LEBESGUE (1875-1941):
H. Lebesgue: Intégrale, longueur, aire. Annali di Mat. 7 (1902), 231-259.
Similarly in other dimensions. So: some but not all sets have a length/area/volume.
Those which do are called (Lebesgue) measurable; length/area/volume is
called (Lebesgue) measure; this subject is called Measure Theory. See e.g.
SP Lecture 1 for details and references.

We first meet integration in just this context – finding areas under curves
(say). The ‘Sixth Form integral’ proceeds by dividing up the range of inte-
gration on the x-axis into a large number of small subintervals, [x, x + dx]
say. This divides the required area up into a large number of thin strips, each
of which is approximately rectangular; we sum the areas of these rectangles
to approximate the area.

This informal procedure can be formalised, as the Riemann integral (G.
F. B. RIEMANN (1826-66) in 1854). This (basically, the Sixth From integral
formalised in the language of epsilons and deltas) is part of the undergradu-
ate Mathematics curriculum. If you know it, fine; if not, don’t worry.

The integration procedure that goes naturally with the Lebesgue ap-
proach above – the Lebesgue integral – basically replaces dividing up the
region into thin strips with base [x, x+ dx] by using instead thin strips with
base [y, y + dy] (see the picture on the cover of [S]). The Lebesgue integral
is much harder to set up than the Riemann integral, but much better: it is
much more general, and much easier to handle.

One new aspect is that the Lebesgue integral is an absolute integral: we
can integrate a function f iff we can integrate its modulus |f |. This means
that formulae such as ∫ ∞

0

sinx

x
dx =

1

2
π
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(see e.g. M2P3 III.4, Lecture 28-29) – an improper Riemann integral, where∫∞
0

means limX→∞
∫ X

0
– have no counterpart in the Lebesgue theory.

It turns out that the mathematics of length, area and volume (Lebesgue
measure) is actually no easier than that of a general measure. Correspond-
ingly, the mathematics of the Lebesgue integral is actually no easier than
that of the general (measure-theoretic) integral. For background, see e.g.
[S].
2. Measure and integral; probability and expectation

A measure of total ‘mass’ 1 is called a probability measure; measure is
then called probability; integral is then called expectation. So, by the above:
a random variable X has an expectation, written E[X], iff |X| does – that
is, iff

E[|X|] < ∞.

When you have met expectations before, they will have been [in general infi-
nite] sums, or integrals. So the above says: the expectation is only defined if
the relevant sum or integral is absolutely convergent. Conditional convergence
is not good enough. We stress:

E[X] exists iff E[|X|] exists, i.e. iff E[|X| < ∞.

Measures and σ-fields
We write µ for a measure – length, area or volume, say (‘m for measure’).

Later on, we shall restrict to probability measures, which we write as P . This
conveniently frees the letter µ for an expectation or mean (‘m for mean’).

Clearly a measure should add over disjoint sets on which it is defined: if
A, B are disjoint, and measurable with measures µ(A), µ(B), then A ∪ B
should be measurable, with measure

µ(A ∪B) = µ(A) + µ(B).

That is, µ should be additive (over disjoint unions, understood). By in-
duction, this should extend to finite disjoint unions (finite additivity): if
A1, . . . , An are measurable with measures µ(Ai), then their union should be
measurable, with measure

µ(
n∪

i=1

Ai) =
n∑

i=1

µ(Ai). (fa)

It turns out that for most purposes we get a better (and simpler!) theory
by assuming additivity over countable disjoint unions (countable additivity):

3



if An are disjoint and measurable with measures µ(An), then their union is
measurable, with measure

µ(
∞∪
n=1

An) =
∞∑
n=1

µ(An). (ca)

Note. The contrast between (fa) and (ca) is interesting, but we have no time
to discuss it here. For background, see e.g. ”favca”:
N. H. BINGHAM: Finite additivity versus countable additivity. Electronic
J. History of Probability and Statistics 6.1 (2010), 35p.

As we have seen, not all sets are measurable in general! As the above may
suggest, countability is relevant here. Recall that an infinite set A is called
countable if its elements can be put into one-to-one correspondence with the
natural numbers. That is, we can list the elements of A:

A = {a1, . . . , an, . . .}

(the list ends iff A is finite – recall fin = end, French). Otherwise, an infinite
set is called uncountable. Think of the (finite or) countable sets as the ‘little
sets’, uncountable sets as the ‘big sets’. We quote:
the natural numbers N, the integers Z and the rationals Q are countable;
the real numbers R are uncountable; so are the numbers in any interval
I = [a, b] of positive length b− a; so are the complex numbers C; so are the
higher-dimensional analogues Rd, Cd of these.

We will write our ‘reference set’ as Ω (see below). It turns out that, if Ω
is countable, one can define a measure on any subset A of Ω in terms of the
measures µ({an}) of singletons (one-point sets), by

µ(A) :=
∑

n:an∈A

µ({an})

(note that both sides may be infinite: e.g., with counting measure, and all
the singletons of mass 1 – take A the even integers).

This simple and obvious procedure does not suffice if Ω is uncountable.
We write A for the class of measurable sets A. By (ca), A should be closed
under countable disjoint unions. It should also be closed under complements:
if µ(A) is defined, then µ(Ac) should be defined also (if A is nice enough
for its measure to be defined, then Ac should be too, as we can specify it as
‘not A’, which is equivalent to specifying A). Also the empty set ∅ should be
measurable with measure 0; hence its complement Ω should be measurable.
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