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Lecture 15. 16.11.2015 (half-hour — Problems)

Proof. (i) This is just linearity of the expectation operator E: Y; = 3 a;; X;+
b;, so

EY; = Zjaz-jEXj + bz = Zjaij,uj + bl‘,

for each 7. In vector notation, this is uy = Ap + 5.
(i) Y; = BY; = > pain(Xp — EXy) = D pain(Xp — p), 50
cov(Y;, Yj) = E[Zrair(Xr_Mr)Z s (Xs—ps)] Z ir Qs B[( X —p1r ) (Xs—pis)]

- Z QjrQjsOrs = (AEAT)ij7
identifying the elements of the matrix product AXAT. //

Corollary. Covariance matrices X are non-negative definite.

Proof. Let a be any n x 1 matrix (row-vector of length n); then Y := aX
is a scalar. So Y = YT = XaT. Taking a = AT,b = 0 above, Y has
variance [= 1 x 1 covariance matrix| a’ Ya. But variances are non-negative.
So a’a > 0 for all n-vectors a. This says that ¥ is non-negative definite. //

We turn now to a technical result, which is important in reducing n-
dimensional problems to one-dimensional ones.

Theorem (Cramér-Wold device). The distribution of a random n-vector
X is completely determined by the set of all one-dimensional distributions
of linear combinations t7 X = > ;tiXi, where t ranges over all fixed n-vectors.

Proof. Y :=tTX has CF

oy (s) := Elexp{isY'}] = Elexp{ist’ X}].

If we know the distribution of each Y, we know its CF ¢y (s). In partic-
ular, taking s = 1, we know Elexp{it’ X}]. But this is the CF of X =
(X1,--+, X,)7T evaluated at t = (ty,---,t,)". But this determines the distri-
bution of X. //



The Cramér-Wold device suggests a way to define the multivariate normal
distribution. The definition below seems indirect, but it has the advantage
of handling the full-rank and singular cases together (p = +1 as well as
—1 < p < 1 for the bivariate case).

Definition. An n-vector X has an n-variate normal (or Gaussian) distribu-
tion iff @’ X is univariate normal for all constant n-vectors a.

Proposition. (i) Any linear transformation of a multinormal n-vector is
multinormal;

(ii) Any vector of elements from a multinormal n-vector is multinormal.

In particular, the components are univariate normal.

Proof. (i) If y = AX 4 ¢ (A an m X n matrix, ¢ an m-vector) is an m-vector,
and b is any m-vector,

V'Y =b"(AX +¢) = (0T A)X +ble.

If a = ATbh (an m-vector), a’ X = b7 AX is univariate normal as X is multi-
normal. Adding the constant b”c, bTY is univariate normal. This holds for
all b, so Y is m-variate normal.

(ii) Take a suitable matrix A of 1s and 0s to choose the required sub-vector.

//

Theorem. If X is n-variate normal with mean p and covariance matrix 3,
its CF is 1

#(t) := Elexp{it' X} = exp{it"p — §tTEt}.
Proof. By the Proposition, ¥ := ¢t X has mean t’y and variance t73t.

By definition of multinormality, ¥ = t'X is univariate normal. So Y is
N(tTp,tT'St). So Y has CF

oy (s) := Elexp{isY'}] = exp{ist’ u — %tTZt}.

But E[(e’Y)] = FElexp{ist’ X}], so taking s = 1 (as in the proof of the
Cramér-Wold device) gives the CF of X as required:

1
Elexp{it" X} = exp{it" u — §tTZt}. //



