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Lecture 15. 16.11.2015 (half-hour – Problems)

Proof. (i) This is just linearity of the expectation operator E: Yi =
∑

jaijXj+
bi, so

EYi =
∑

j
aijEXj + bi =

∑
j
aijµj + bi,

for each i. In vector notation, this is µY = Aµ+ β.

(ii) Yi − EYi =
∑

kaik(Xk − EXk) =
∑

kaik(Xk − µk), so

cov(Yi, Yj) = E[
∑

r
air(Xr−µr)

∑
s
ajs(Xs−µs)] =

∑
rs
airajsE[(Xr−µr)(Xs−µs)]

=
∑

rs
airajsσrs = (AΣAT )ij,

identifying the elements of the matrix product AΣAT . //

Corollary. Covariance matrices Σ are non-negative definite.

Proof. Let a be any n × 1 matrix (row-vector of length n); then Y := aX
is a scalar. So Y = Y T = XaT . Taking a = AT , b = 0 above, Y has
variance [= 1× 1 covariance matrix] aTΣa. But variances are non-negative.
So aTΣa ≥ 0 for all n-vectors a. This says that Σ is non-negative definite. //

We turn now to a technical result, which is important in reducing n-
dimensional problems to one-dimensional ones.

Theorem (Cramér-Wold device). The distribution of a random n-vector
X is completely determined by the set of all one-dimensional distributions
of linear combinations tTX =

∑
itiXi, where t ranges over all fixed n-vectors.

Proof. Y := tTX has CF

ϕY (s) := E[exp{isY }] = E[exp{istTX}].

If we know the distribution of each Y , we know its CF ϕY (s). In partic-
ular, taking s = 1, we know E[exp{itTX}]. But this is the CF of X =
(X1, · · · , Xn)

T evaluated at t = (t1, · · · , tn)T . But this determines the distri-
bution of X. //
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The Cramér-Wold device suggests a way to define the multivariate normal
distribution. The definition below seems indirect, but it has the advantage
of handling the full-rank and singular cases together (ρ = ±1 as well as
−1 < ρ < 1 for the bivariate case).

Definition. An n-vector X has an n-variate normal (or Gaussian) distribu-
tion iff aTX is univariate normal for all constant n-vectors a.

Proposition. (i) Any linear transformation of a multinormal n-vector is
multinormal;
(ii) Any vector of elements from a multinormal n-vector is multinormal.
In particular, the components are univariate normal.

Proof. (i) If y = AX + c (A an m×n matrix, c an m-vector) is an m-vector,
and b is any m-vector,

bTY = bT (AX + c) = (bTA)X + bT c.

If a = AT b (an m-vector), aTX = bTAX is univariate normal as X is multi-
normal. Adding the constant bT c, bTY is univariate normal. This holds for
all b, so Y is m-variate normal.
(ii) Take a suitable matrix A of 1s and 0s to choose the required sub-vector.
//

Theorem. If X is n-variate normal with mean µ and covariance matrix Σ,
its CF is

ϕ(t) := E[exp{itTX} = exp{itTµ− 1

2
tTΣt}.

Proof. By the Proposition, Y := tTX has mean tTµ and variance tTΣt.
By definition of multinormality, Y = tTX is univariate normal. So Y is
N(tTµ, tTΣt). So Y has CF

ϕY (s) := E[exp{isY }] = exp{istTµ− 1

2
tTΣt}.

But E[(eisY )] = E[exp{istTX}], so taking s = 1 (as in the proof of the
Cramér-Wold device) gives the CF of X as required:

E[exp{itTX} = exp{itTµ− 1

2
tTΣt}. //
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