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Lecture 16. 17.11.2015

Corollary. The components of X are independent iff Σ is diagonal – that is,
iff the components are uncorrelated. So in the Gaussian case, ‘independent’
is the same as ‘uncorrelated’.

Proof. The components are independent iff the joint CF factors into the prod-
uct of the marginal CFs. This factorization takes place, into Πi exp{µiti −
1
2
σiit

2
i }, in the diagonal case only. //

Note. Recall that we need random variables to be in L2 (square-integrable)
for their variances and covariances to be defined. Then, ‘independent’ implies
‘uncorrelated’: if X, Y are independent,

cov(X,Y ) := E[(X − E[X])(Y − E[Y ])] = E[X − E[X]].E[Y − E[Y ]] = 0,

by the Multiplication Theorem. But the converse is far from true in general.
For example, if

U ∼ U(0, 1), X := cos 2πU, Y := sin 2πU,

then E[X] =
∫ 2π

0
cosudu = 0, E[Y ] = 0 similarly, andE[XY ] =

∫ 2π

0
cos 2πu sin 2πudu

= 1
2

∫ 2π

0
sin 4πudu = 0. So X,Y are uncorrelated. But they are very heavily

dependent: knowing an angle’s sine, the angle is determined to within two
values, and thus its cosine is also.

This identification of ‘independent’ with ‘uncorrelated’ is a very special,
and very useful, property of normality/Gaussianity.

Recall that a covariance matrix Σ is always (i) symmetric: (σij = σji, as
σij = cov(Xi, Xj));
(ii) non-negative definite: aTΣa ≥ 0 for all n-vectors a.
Suppose that Σ is, further, positive definite:

aTΣa > 0 unless a = 0.

[We write Σ > 0 for ‘Σ is positive definite’, Σ ≥ 0 for ‘Σ is non-negative
definite’.]
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Recall from Linear Algebra that λ is an eigenvalue of a matrix A with
eigenvector x (̸= 0) if

Ax = λx

(x is normalized if xTx = Σix
2
i = 1, as is always possible), and

(i) a symmetric matrix has all its eigenvalues real;
(ii) a symmetric non-negative definite matrix has all its eigenvalues non-
negative;
(iii) a symmetric positive definite matrix is non-singular (has an inverse),
and has all its eigenvalues positive.

We quote

Theorem (Spectral Decomposition). If A is a symmetric matrix, A can
be written

A = ΓΛΓT ,

where Λ is a diagonal matrix of eigenvalues of A, Γ is an orthogonal matrix
whose columns are normalized eigenvectors.

Corollary. (i) For Σ a covariance matrix, we can define its square root ma-

trix Σ
1
2 by Σ

1
2 := ΓΛ

1
2ΓT , Λ

1
2 := diag(λ

1
2
i ), with Σ

1
2Σ

1
2 = Σ.

For Σ a non-singular (i.e. positive definite) covariance matrix, we can

define its inverse square root matrix Σ− 1
2 by

Σ− 1
2 := ΓΛ− 1

2ΓT , Λ− 1
2 := diag(λ− 1

2 ), with Λ− 1
2Λ− 1

2 = Λ−1.

Theorem. If Xi are independent (univariate) normal, any linear combina-
tion of the Xi is normal. That is, X = (X1, · · · , Xn)

T , with Xi independent
normal, is multinormal.

Proof. If Xi are independent N(µi, σ
2
i ) (i = 1, · · · , n), Y :=

∑
iaiXi + c

is a linear combination, Y has CF

ϕY (t) := E[exp{it(c+
∑

i
aiXi)}]

= etcE[Π exp{itaiXi}] (property of exponentials)

= eitcΠE[exp{itaiXi}] (independence)

= eitcΠexp{µii(ait)−
1

2
σ2
i (ait)

2} (normal CF)
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= exp{i[c+
∑

i
aiµi]t−

1

2
[
∑

i
a2iσ

2
i ]t

2,

so Y is N(c+
∑

iaiµi,
∑

ia
2
iσ

2
i ), from its CF. //

The Multinormal Density
If X is n-variate normal, N(µ,Σ), its density (in n dimensions) need not

exist (e.g. the singular case ρ = ±1 with n = 2 of the bivariate normal –
see e.g. [BF], 1.5). But if Σ > 0 (so Σ−1 exists), X has a density. The link
between the multinormal density below and the multinormal CF above is
due to the English statistician F. Y. Edgeworth (1845-1926).

Theorem (Edgeworth, 1893). If µ is an n-vector, Σ > 0 a symmetric
positive definite n× n matrix, then
(i)

f(x) :=
1

(2π)
1
2
n|Σ|

1
2

exp{−1

2
(x− µ)TΣ−1(x− µ)}

is an n-dimensional probability density function (of a random n-vector X,
say);
(ii) X has CF ϕ(t) = exp{itTµ− 1

2
tTΣt};

(iii) X is multinormal N(µ,Σ).

Proof. Write Y := Σ− 1
2X (Σ− 1

2 exists as Σ > 0, by above). Then Y has

covariance matrix Σ− 1
2Σ(Σ− 1

2 )T . Since Σ = ΣT and Σ = Σ
1
2Σ

1
2 , Y has

covariance matrix I (the components Yi of Y are uncorrelated).

Change variables as above, with y = Σ− 1
2x, so x = Σ

1
2y, and ν := Σ− 1

2µ,
so µ = Σ

1
2ν. So

x−µ = Σ
1
2 (y−ν), (x−µ)TΣ−1(x−µ) = (y−ν)TΣ

1
2Σ−1Σ

1
2 (y−ν) = (y−ν)T (y−ν).

The Jacobian is (taking A = Σ− 1
2 ) J = ∂x/∂y = det(Σ

1
2 ),= (detΣ)

1
2 by the

product theorem for determinants.
By the change of density formula, Y has density

g(y) =
1

(2π)
1
2
n|Σ|

1
2

.|Σ|
1
2 . exp{−1

2
(y−ν)T (y−ν)}, = Πn

i=1

1

(2π)
1
2

exp{−1

2
(yi−νi)

2}.

So the components Yi are independent N(νi, 1). So Y is N(ν, I).
(i) Taking A = B = Rn,

∫
Rn f(x)dx =

∫
Rn g(y)dy,= 1 as g is a probability
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density, as above. So f is also a probability density.
(ii) X = Σ

1
2Y is a linear transf. of Y , so is multivariate normal as Y is.

(ii) E[X] = Σ
1
2E[Y ] = Σ

1
2ν = Σ

1
2 .Σ− 1

2µ = µ, cov(X) = Σ
1
2 cov(Y )(Σ

1
2 )T =

Σ
1
2 IΣ

1
2 = Σ. So X is multinormal N(µ,Σ). So its CF is

ϕ(t) = exp{tTµ− 1

2
tTΣt}. //

Independence of Linear Forms.
Given a normally distributed random vector x ∼ N(µ,Σ) and a matrix

A, one may form the linear form Ax. One often needs to know when such
linear forms are independent.

Theorem. Linear forms Ax and Bx with x ∼ N(µ,Σ) are independent iff

AΣBT = 0.

In particular, if A, B are symmetric and Σ = σ2I, they are independent iff

AB = 0.

Proof. The joint CF is

ϕ(u, v) := E[exp{iuTA+ ivTBx}] = E[exp{i(ATu+BTv)Tx}].
This is the CF of x at argument t = ATu+BTv, so

ϕ(u, v) = exp{i(uTA+vTB)µ−1

2
[uTAΣATu+uTAΣBTv+vTBΣATu+vTBΣBTv]}.

This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AΣBT = 0 and BΣAT = 0; by
symmetry of Σ, the two are equivalent. //

Independence of quadratic forms.
If the matrix of a quadratic form is a symmetric projection P , then the

quadratic form is

xTPx = xTPPx = (Px)T (Px) = ∥Px∥2.
So the question of independence of such quadratic forms – the only ones that
we shall encounter – reduces to that of linear forms Px. This is dealt with by
the above. This explains why PiPj = 0 (i ̸= j) – the orthogonality condition
between projections Pi, Pj – is needed, in the Chi-Square Decomposition
Theorem of IV.2 (Cochran’s theorem).
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