pfsl2(15).tex

Lecture 2. 12.10.2015

Definition. A σ -field (or σ -algebra) \mathcal{A} is a class containing the whole set, closed under complements, and closed under countable disjoint unions (the " σ " here is from the German Summe = sum – the old-fashioned notation for a union is a sum).

The natural domain of definition of a measure is a σ -field: Definition. A measurable space is a pair (Ω, \mathcal{A}) , where \mathcal{A} is a σ -field of sets $A \subset \Omega$.

A measure space is a triple $(\Omega, \mathcal{A}, \mu)$, where μ is a measure defined on \mathcal{A} (that is, $\mu(A)$ is defined on all the sets $A \subset \Omega$).

A probability measure is a measure P of mass 1, $P(\Omega) = 1$; then (Ω, \mathcal{A}, P) is a probability space.

Axiomatic Probability Theory as Measure Theory for measures of mass 1 is due to A. N. KOLMOGOROV (1903-87) in his 1933 book *Grundbegriffe der Wahrscheinlichkeitsrechnung*.

Examples. On the real line \mathbb{R} , the intervals I; [a,b] are (Lebesgue) measurable, with (Lebesgue) measure

$$\mu([a,b]) := b - a. \tag{L}$$

The σ -field generated by the intervals (= smallest σ -field containing the intervals, = intersection of all σ -fields containing the intervals – this is a σ -field) is called the *Borel* σ -field \mathcal{B} ; its sets are called the *Borel sets* \mathcal{B} (Emile BOREL (1871-1956, thesis of 1893). One can check that it does not matter whether we use closed intervals [a, b], open ones (a, b), half-open ones (a, b), semi-infinite intervals $(-\infty, a]$, etc. – they all generate the same σ -field.

A subset of a Borel set of measure 0 need not be a Borel set. Nevertheless, one feels that "a subset of a set of measure 0 should also have measure 0" – or, as we call sets of measure 0 null sets, "a subset of a nullset should also be a null set". It turns out that this is true for the σ -field generated by the intervals and the null sets together. These are called the Lebesgue measurable sets, \mathcal{L} . This process of including all subsets of null sets as null sets always works, and is called completion. Thus \mathcal{L} is the completion of \mathcal{B} .

The measure μ obtained on \mathcal{L} from (L) in this way is called *Lebesgue measure*; \mathcal{L} is the natural domain of definition of μ .

Of course, the real line \mathbb{R} has infinite Lebesgue measure (= length). But, it often suffices in Analysis, and even more in Probability, so work with the

unit interval [0,1]. Then $([0,1], \mathcal{L}, \lambda)$, where \mathcal{L} here denotes the Lebesguemeasurable subsets of [0,1] and μ Lebesgue measure on them, is called the Lebesgue probability space (see below).

Measurable functions; integrals. If f is a function from a measurable space (Ω, \mathcal{A}) to the reals $(\mathbb{R}, \mathcal{B})$, one calls f measurable if

$$f^{-1}(B) \in \mathcal{A}$$
 for all $B \in \mathcal{B}$

– that is, inverse images of Borel sets are measurable.

These are the 'nice' functions, and we may restrict ourselves to them.

A (measurable) function of the form

$$f = \sum_{i=1}^{n} c_i I_{(a_i,b_i]}$$

is called a *simple function*. We can define the *integral* $\int f d\mu$ of a simple function with respect to the measure μ by

$$\int f d\mu := \sum_{i=1}^{n} c_i \mu((a_i, b_i])$$

when this is finite; we then say that f is μ -integrable, and write $f \in L_1(\mu)$ (L for Lebesgue; 1 for the first power, f). When it is $+\infty$, $\int f d\mu$ is undefined and f is not μ -integrable.

It turns out that a non-negative measurable function f is always the increasing limit of simple functions f_n , and that

$$\int f d\mu := \lim_{n \to \infty} \int f_n d\mu$$

defines $\int f d\mu$ uniquely (there are many such increasing sequences f_n , but they all give the same limit above).

Writing

$$x_{+} := \max(x, 0), \qquad x_{-} := -\min(x, 0)$$

for the positive part and negative part of x, we may check that

$$|x| = x_+ + x_-, \qquad x = x_+ - x_-.$$

We can extend the definition above from non-negative measurable functions to general measurable functions by linearity:

$$\int f d\mu := \int f_+ d\mu - \int f_- d\mu.$$

Of course, this only holds when both integrals on the right are defined (are finite). So then

$$\int |f|d\mu = \int f_+ d\mu + \int f_- d\mu.$$

Thus f is μ -integrable iff |f| is: the (measure-theoretic) integral here is an absolute integral, as we saw before. Also, the integral is easily seen to be linear: if $f, g \in L_1(\mu)$ and a, b are constants, then $af + bg \in L_1(\mu)$ and

$$\int (af + bg)d\mu = a \int fd\mu + b \int gd\mu.$$

As one might suspect from the definition above, one can change the values of f on a μ -null set without changing the value of $\int f d\mu$. So: we are really dealing here with, not individual functions f themselves, but equivalence classes, under the equivalence relation

$$f \equiv g$$
 iff $f = g$ $\mu - a.e.$,

where ' μ -a.e.' (' μ -almost everywhere' means 'except on a μ -null set').

For us, our (positive) measure (or integrator) μ , a set-function, will be obtained from a (non-decreasing) point function (which to save letters we also write μ), vanishing at some reference point x_0 , by

$$\mu((a,b]) = \mu(b) - \mu(a).$$
 (LS)

The LS here is for Lebesgue-Stieltjes (the μ on the left is a LS measure, that on the right is a LS measure function). Thus for Lebesgue measure $\mu(x) \equiv x$ and $x_0 = 0$; for probability measures P, the point function is the distribution function (below), and $x_0 = -\infty$.

Random variables. When the measure space is a probability space (Ω, \mathcal{A}, P) , we call the sets $A \in \mathcal{A}$ events. These are the sets A whose probabilities P(A) are defined (this is consistent, both with ordinary speech and with usage in one's first exposure to Probability). We call a measurable function a random variable. In this case, we will use notation such as X, Y etc. rather than f, g etc. We call $\int_{\Omega} X dP$ the expectation of X, E[X]:

$$E[X] := \int_{\Omega} X dP.$$

By above, the expectation is *linear*:

$$E[aX + bY] = aE[X] + bE[Y].$$

Note. We need an absolute integral, as here, to get linearity of expectation. Without the restriction that E[X] exists iff E[|X|] exists, linearity of the expectation may fail. Recall from Analysis: absolutely convergent sums, integrals etc. may be rearranged at will. Conditionally convergent sums, integrals etc. are very dangerous: they result from 'cancelling infinities'. Note also that a + b makes sense, not just for real numbers a and b, but for one or both of a or $b + \infty$ (then their sum is also $+ \infty$); similarly for $- \infty$. But we must avoid the meaningless symbol " $\infty - \infty$ ". In much the same way, we must avoid the meaningless "0/0", as we know from Calculus.

Distribution functions. If X is a random variable (measurable function), the inverse image $X^{-1}(B) \in \mathcal{A}$ for all Borel sets B – equivalently, this holds for all B in some set that generates the Borel σ -field \mathcal{B} . The half-lines $(-\infty, x]$ $(x \in \mathbb{R})$ form such a set. So X is a random variable (rv) iff $X^{-1}((-\infty, x]) \in \mathcal{A}$ for each x, that is, $\{X \leq x\} \in \mathcal{A}$ (is an event), that is, iff

$$F(x) := P(\{X \le x\})$$

is defined. Now the function F here (or F_X , if we need to distinguish between F_X and F_Y say) is called the (probability) distribution function (or just distribution, or d/n fn) is defined: X is a random variable iff its distribution function is defined.

Densities. If for some function $f \geq 0$ one has

$$F(x) := P(\{X \le x\}) = \int_{-\infty}^{x} f(u)du \qquad (x \in \mathbb{R}),$$

one calls f the (probability) density (function) of F, or X. Call this the density case, and such F absolutely continuous (SP L7). Then $f \geq 0$ corresponds to F non-decreasing. Then F'(x) = f(x), but only a.e. (SP L7). Example: the uniform distribution U[0,1]. On the Lebesgue probability space, U is a uniformly distributed random variable:

$$P(U \in (a,b]) = b - a \qquad (0 \le a \le b \le 1)$$

('probability = length'). This has distribution and density functions

$$F(x) = 0 \quad (x \leq 0), \quad x \quad (0 \leq x \leq 1), \quad 1 \quad (x \geq 1); \quad f(x) = I_{[0,1]}(x).$$

Here F fails to be differentiable at the end-points 0 and 1 of the support interval [0,1] – but this exceptional set is of measure 0.