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Lecture 28. 15.12.2015
Poisson point processes (continued).

This counts the Poisson points in B – and is a Poisson process with rate
(parameter) ν(B). All this reverses: starting with an e = (e(t) : t ≥ 0)
whose counting processes over Borel sets B are Poisson P (ν(B)), then – as
no point can contribute to more than one count over disjoint sets – disjoint
counting processes never jump together, so are independent by above, and
ϕ :=

∑
t≥0 δ(e(t),t) is a Poisson measure with intensity µ = ν × dt.

Lévy Processes; Lévy-Khintchine Formula; Lévy-Itô decomposition.
We can now sketch the close link between the general Lévy process on

the one hand and the general infinitely-divisible law given by the Lévy-
Khintchine formula (LK) on the other.

First, if X = (Xt) is Lévy, the law of each X1 is infinitely divisible, so

E exp{iuX1} = exp{−Ψ(u)} (u ∈ R)

with Ψ a Lévy exponent as in (LK). Similarly,

E exp{iuXt} = exp{−tΨ(u)} (u ∈ R),

for rational t at first and general t by approximation and càdlàg paths. Then
Ψ is called the Lévy exponent, or characteristic exponent, of the Lévy process
X. Conversely, given a Lévy exponent Ψ(u) as in (LK), construct a Brownian
motion, and an independent Ppp ∆ = (∆t : t ≥ 0) with characteristic
measure µ, the Lévy measure in (LK). Then X1(t) := at+ σBt has CF

E exp{iuX1(t)} = exp{−tΨ1(t)} = exp

{
−t(iau+ 1

2
σ2u2)

}
,

giving the non-integral terms in (LK). For the ‘large’ jumps of ∆, write

∆
(2)
t := ∆t if |∆t| ≥ 1, 0 else.

Then ∆(2) is a Poisson point process with characteristic measure µ(2)(dx) :=
I(|x| ≥ 1)µ(dx). Since

∫
min(1, |x|2)µ(dx) <∞, µ(2) has finite mass, so ∆(2),

a Ppp(µ(2)), is discrete and its counting process

X
(2)
t :=

∑
s≤t

∆(2)
s (t ≥ 0)
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is compound Poisson, with Lévy exponent

Ψ(2)(u) =

∫
(1− eiux)I(|x| ≥ 1)µ(dx) =

∫
(1− eiux)µ(2)(dx).

There remain the ‘small jumps’,

∆
(3)
t := ∆t if |∆t| < 1, 0 else,

a Ppp(µ(3)), where µ(3)(dx) = I(|x| < 1)µ(dx), and independent of ∆(2)

because ∆(2), ∆(3) are Poisson point processes that never jump together. For
each ϵ > 0, the ‘compensated sum of jumps’

X
(ϵ,3)
t :=

∑
s≤t

I(ϵ < |∆s| < 1)∆s − t

∫
xI(ϵ < |x| < 1)µ(dx) (t ≥ 0)

is a Lévy process with Lévy exponent

Ψ(ϵ,3)(u) =

∫
(1− eiux + iux)I(ϵ < |x| < 1)µ(dx).

Use of a suitable maximal inequality allows passage to the limit ϵ ↓ 0 (going

from finite to possibly countably infinite sums of jumps): X
(ϵ,3)
t → X

(3)
t , a

Lévy process with Lévy exponent

Ψ(3)(u) =

∫
(1− eiux + iux)I(|x| < 1)µ(dx),

independent of X(2) and with càdlàg paths. Combining:

Theorem (Lévy-Itô decomposition). For a Lévy exponent

Ψ(u) = iau+
1

2
σ2u2 +

∫
(1− eiux + iuxI(|x| < 1)µ(dx),

the construction above yields a Lévy process

X = X(1) +X(2) +X(3)

with Lévy exponent Ψ = Ψ(1) + Ψ(2) + Ψ(3). Here the X(i) are independent
Lévy processes, with Lévy exponents Ψ(i); X(1) is Gaussian, X(2) is a com-
pound Poisson process with jumps of modulus ≥ 1; X(3) is a compensated
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sum of jumps of modulus < 1. The jump process ∆X = (∆Xt : t ≥ 0) is a
Ppp(µ), and similarly ∆X(i) is a Ppp(µ(i)) for i = 2, 3.

Stable processes.
A stable process has (to within location and scale) a Lévy exponent in-

volving two parameters, α ∈ (0, 2], called the index, and β ∈ [−1, 1], called
the skewness parameter:

Ψ(u) = |u|α(1−iβ(sgn u) tan(1
2
πα)) (α ̸= 1), |u|(1+iβ(sgn u) 2

π
log |u|) (α = 1)

(for α = 2, β drops out as tan π = 0, so Ψ(u) = u2, giving the normal
(Gaussian) distribution). The case α = 1 is the Cauchy case; the asymmetric
Cauchy case α = 1, β ̸= 0 is awkward, and we do not consider it further.

The Lévy measure µ in the stable case is absolutely continuous, with
density ν, µ(dx) = ν(x)dx, where

ν(x) = c+/x
1+α (x > 0), c−/|x|1+α (x < 0) (c± ≥ 0, c+ + c− > 0).

Here
β = (c= − c−)/(c+ + c−).

The calculations are simpler in the symmetric case, c+ = c−,= c say. Then

Ψ′(u) = 2cuα−1I (u > 0), I :=

∫ ∞

0

v−α sin vdv.

So Ψ(u) = 2cIuα/α for u > 0, and similarly for u < 0: Ψ(u) = |u|α.2cI/a
But (see e.g. M2PM3 L30 on my website: there t = 1 − α ∈ (0, 1),
but we can extend by analytic continuation to −1 < t < 1, α ∈ (0, 2))
I = Γ(1−α) cos(1

2
πα) (here α ̸= 1: Γ(z) has a pole at z = 0; for the Cauchy

case α = 1 see above). Choose c := σ/(2I); then Ψ(u) = |u|α.
Example: The Holtsmark distribution.

The symmetric stable law with α = 3/2 is called the Holtsmark distri-
bution, proposed by the Danish physicist J. Holtsmark in 1919 as a model
for the distribution of galaxies in space (here 3/2 comes from the 3 dimen-
sions of space and the 2 in Newton’s Inverse Square Law of Gravity). Since
Γ(1

2
) =

√
π and Γ(1 + x) = xΓ(x), the constant Γ(1− α) cos(1

2
πα) here is∫ ∞

0

v3/2 sin vdv = Γ(−1

2
) cos(3π/4) = (−2

√
π).(−1/

√
2) =

√
2π.
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Subordinators.
We resort to complex numbers in the CF ϕ(u) = E(eiuX) because this al-

ways exists – for all real u – unlike the ostensibly simpler moment-generating
function (MGF) M(u) := E(euX), which may well diverge for some real
u. However, if the random variable X is non-negative, then for s ≥ 0 the
Laplace-Stieltjes transform (LST)

ψ(s) := E[e−sX ] ≤ E(1) = 1

always exists. For X ≥ 0 we have both the CF and the LST to hand, but
the LST is usually simpler to handle. We can pass from CF to LST formally
by taking u = is, and this can be justified by analytic continuation.

Some Lévy processes X have increasing (i.e. non-decreasing) sample
paths; these are called subordinators. From the construction above, sub-
ordinators can have no negative jumps, so µ has support in (0,∞) and no
mass on (−∞, 0). Because increasing functions have FV, one must have
paths of (locally) finite variation, the condition for which can be shown to be∫

min(1, |x|)µ(dx) <∞.

Thus the Lévy exponent must be of the form

Ψ(u) = −idu+
∫ ∞

0

(1− eiux)µ(dx),

with d ≥ 0. It is more convenient to use the Laplace exponent Φ(s) = Ψ(is):

E (exp{−sXt}) = exp{−tΦ(s)} (s ≥ 0), Φ(s) = ds+

∫ ∞

0

(1−e−sx)µ(dx).

Random time-change.
Because of the arrow of time, the fact that subordinator paths increase,

as time elapsed does, makes them suitable for random changes of time. It
may be useful to pass from real time to operational time, speeding things up
when nothing much is happening and slowing things down when too much is
happening. We have evolved to experience time this way ourselves in a crisis!
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