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Q1. The chi-square distribution with n degrees of freedom, χ2(n), is defined
as the distribution of X2

1 + . . .+X2
n, where Xi are iid N(0, 1).

(i) For n = 1, the mean is 1, because a χ2(1) is the square of a standard
normal, and a standard normal has mean 0 and variance 1. The variance is
2, because the fourth moment of a standard normal X is 3, and

var(X2) = E[(X2)2]− [E(X2)]2 = 3− 1 = 2.

For general n, the mean is n because means add, and the variance is 2n
because variances add over independent summands.
(ii) For X standard normal, the MGF of its square X2 is

M(t) :=
∫
etx

2

ϕ(x)dx =
1√
2π

∫ ∞

0
etx

2

.e−
1
2
x2

dx.

We see that the integral converges only for t < 1
2
, when (normal integral) it

is 1/
√
(1− 2t):

M(t) = 1/
√
1− 2t (t <

1

2
) for X N(0, 1).

So by definition of χ2(n), the MGF of a χ2(n) is

M(t) = 1/(1− 2t)
1
2
n (t <

1

2
) for X χ2(n).

(iii) First, the required density f(.) is a density, as f ≥ 0 and
∫
f = 1:∫

f(x)dx =
1

2
1
2
nΓ(1

2
n)

.
∫ ∞

0
x

1
2
n−1 exp(−1

2
x)dx =

1

Γ(1
2
n)

.
∫ ∞

0
u

1
2
n−1 exp(−u)du = 1

(u := 1
2
x), by definition of the Gamma function. Its MGF is

M(t) =
1

2
1
2
nΓ(1

2
n)

.
∫ ∞

0
etx.x

1
2
n−1 exp(−1

2
x)dx =

1

2
1
2
nΓ(1

2
n)

.
∫ ∞

0
x

1
2
n−1 exp(−1

2
x(1−2t))dx.

Substitute u := 1
2
x(1− 2t) in the integral. One obtains

M(t) = (1− 2t)−
1
2
n.

1

Γ(1
2
n)

.
∫ ∞

0
u

1
2
n−1e−udu = (1− 2t)−

1
2
n.

So it has the required MGF, so is the required density. //
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Q2. An n-vector X has an n-variate normal (or Gaussian) distribution iff
aTX is univariate normal for all constant n-vectors a.

Theorem. If X is n-variate normal with mean µ and covariance matrix Σ,
its CF is

ϕ(t) := E[exp{itTX} = exp{itTµ− 1

2
tTΣt}.

Proof. By the Proposition, Y := tTX has mean tTµ and variance tTΣt.
By definition of multinormality, Y = tTX is univariate normal. So Y is
N(tTµ, tTΣt). So Y has CF

ϕY (s) := E[exp{isY }] = exp{istTµ− 1

2
tTΣt}.

But E[(eisY )] = E[exp{istTX}], so taking s = 1 (as in the proof of the
Cramér-Wold device),

E[exp{itTX} = exp{itTµ− 1

2
tTΣt},

giving the CF of X as required. //

Theorem. Linear forms Ax and Bx with x ∼ N(µ,Σ) are independent iff

AΣBT = 0.

In particular, if A, B are symmetric and Σ = σ2I, they are independent iff

AB = 0.

Proof. The joint CF is

ϕ(u, v) := E[exp{iuTA+ ivTBx}] = E[exp{i(ATu+BTv)Tx}].

This is the CF of x at argument t = ATu+BTv, so

ϕ(u, v) = exp{i(uTA+vTB)µ−1

2
[uTAΣATu+uTAΣBTv+vTBΣATu+vTBΣBTv]}.

This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AΣBT = 0 and BΣAT = 0; by
symmetry of Σ, the two are equivalent. //
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Q3. As f ≥ 0 and∫
f =

1√
2π

∫ ∞

0
x−3/2 exp

(
− 1

2x

)
dx

=
1√
2π

∫ ∞

0
u

1
2 exp(−1

2
u)du (u := 1/x)

=
1√
2π

.
√
2
∫ ∞

0
v

1
2 exp(−v)dv (v :=

1

2
u)

=
1√
π
Γ(

1

2
) = 1 (Γ(

1

2
) =

√
π),

f is a density. Its Laplace-Stieltjes transform is

ϕ(s) =
1√
2π

.
∫ ∞

0
exp(−sx− 1

2x
).

dx

x3/2
.

Differentiate under the integral sign (as we may, the integrand being mono-
tone in s – we quote this):

ϕ′(s) = − 1√
2π

.
∫ ∞

0
exp(−sx− 1

2x
).
dx√
x
.

The change of variable suggested interchanges the two terms in the exponen-
tial. It reverses the limits, and

dx√
x
= − 1√

2s
.
du

u3/2
.

This gives

ϕ′(s) = − 1√
2s

.ϕ(s) :
ϕ′(s)

ϕ(s)
= − 1√

2s
.

Integrate: log ϕ(s) = −
√
2s+ c, ϕ(s) = ce−

√
2s. But ϕ(0) =

∫
f = 1, so c = 1

and ϕ(s) = e−
√
2s. //
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Q4. The number of subsets of size d of a set of size 2d is
(
2d
d

)
. With d white

balls and d black balls; the i white balls can be chosen in
(
d
i

)
, the remaining

d − i black balls in
(

d
d−1

)
=
(
d
i

)
ways. So

(
2d
d

)
=
∑d

0

(
d
i

)2
counts the total

number of ways by how many white balls are chosen. So πi defines a pr.
distribution (the hypergeometric distribution HG(d)).(

d

j − 1

)
(d−j+1) =

d!

(j − 1)!(d− j + 1)!
.(d−j+1) =

d!

(j − 1)!(d− j)!
=

(
d

j

)
.j,

(i)(
d

j + 1

)
(j +1) =

d!

(j + 1)!(d− j − 1)!
(j +1) =

d!

j!(d− j − 1)!
=

(
d

j

)
.(d− j).

(ii)
So by (i) and (ii),

(πP )j =
∑
i

πipij = πj−1pj−1,j + πj+1pj+1,j

=
1

d2
(
2d
d

)[( d

j − 1

)2

(d− j + 1)2 +

(
d

j

)2

.2j(d− j) +

(
d

j + 1

)2

(j + 1)2
]

=

(
d
j

)2
d2
(
2d
d

){j2 + 2d(d− j) + (d− j)2} =

(
d
j

)2(
2d
d

) = πj.

So πP = π, and π is invariant, as required. //

πipi,i+1 =

(
2d

d

)−1((d
i

)
.
d− i

d

)2
=

(
2d

d

)−1( d!

(d− i)!i!
.
d− i

d

)2
=

(
2d

d

)−1(
d− 1

i

)2

,

and similarly

πi+1pi+1,i =

(
2d

d

)−1(
d− 1

i

)2

,

proving detailed balance, and so reversibility. Then

πi = π0

(1
1
d

.
1− 1

d
2
d

. . . . .
1− i−1

d
i
d

)2
=
(
π0.

d(d− 1) . . . (d− i+ 1)

1.2 . . . .i

)2
= π0

(
d

i

)2

.

Then
∑

i πi = 1 gives

π0

∑
i

(
d

i

)2

= π0.

(
2d

d

)
= 1, π0 =

(
2d

d

)−1

, πi =

(
d

i

)2

/

(
2d

d

)
, π = HG(d).
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