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Q1. The chi-square distribution with n degrees of freedom, χ2(n), is defined
as the distribution of X2

1 + . . .+X2
n, where Xi are iid N(0, 1).

(i) For X standard normal, the MGF of its square X2 is

M(t) :=

∫
etx

2
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2π
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2

.e−
1
2
x2

dx.

We see that the integral converges only for t < 1
2
, when (normal integral) it

is 1/
√

(1− 2t): M(t) = 1/
√
(1− 2t) (t < 1

2
) for X ∼ N(0, 1).

So by definition of χ2(n), the MGF of a χ2(n) is

M(t) = 1/(1− 2t)
1
2
n (t <

1

2
) for X ∼ χ2(n). [8]

Replacing t by it by analytic continuation, the characteristic function is

ϕ(t) = 1/(1− 2it)
1
2
n.

(ii) First, the required density f(.) is a density, as f ≥ 0 and
∫
f = 1:∫
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(u := 1
2
x), by definition of the Gamma function. Its MGF is

M(t) =
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Substitute u := 1
2
x(1− 2t) in the integral. One obtains

M(t) = (1− 2t)−
1
2
n.

1

Γ(1
2
n)
.

∫ ∞

0
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1
2
n−1e−udu = (1− 2t)−

1
2
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So it has the required MGF, so is the required density. // [9]
(iii) For n = 1, the mean is 1, because a χ2(1) is the square of a standard
normal, and a standard normal has mean 0 and variance 1. The variance is
2, because the fourth moment of a standard normal X is 3, and

var(X2) = E[(X2)2]− [E(X2)]2 = 3− 1 = 2.

For general n, the mean is n because means add. [4]
The variance is 2n because variances add over independent summands.
(Or, use (i), (ii).) [4]
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Q2 (Weak Law of Large Numbers, WLLN).
Random variables Xn converge in probability to X if

∀ ϵ > 0, P (|Xn −X| > ϵ) → 0 (n→ ∞). [2]

They converge to X in distribution if

Fn(x) := P (Xn ≤ x) → F (x) := P (X ≤ x) (n→ ∞),

at all continuity points x of F . [2]
(a) Convergence in probability implies convergence in distribution, but not
conversely in general. [1]
(b) The converse holds (so the two are equivalent) if the limit X is con-
stant. [1]

We need the following properties of the characteristic function (CF):
(i) (Lévy’s convergence theorem). Convergence in distribution of random
variables is equivalent to convergence of CFs (uniformly on compacta). [2]
(ii). The CF of an independent sum is the product of the CFs. [2]
(iii). If the random variable has k moments (finite), the CF can be expanded
as far as the tk term with negligible error term o(tk) for small t. [2]

Recall that (for x real and zn → z complex)

(1 +
x

n
)n → ex, (1 +

zn
n
)n → ez (n→ ∞). (∗) [2]

Theorem (Weak Law of Large Numbers, WLLN). [3]
If Xi are iid with mean µ,

1

n

n∑
1

Xk → µ (n→ ∞) in probability.

Proof. If the Xk have CF ϕ(t), then as the mean µ exists ϕ(t) = 1+ iµt+o(t)
as t→ 0, by (iii). So by (ii) (X1 + . . .+Xn)/n has CF

E exp{it(X1 + . . .+Xn)/n} = [ϕ(t/n)]n = [1 +
iµt

n
+ o(1/n)]n,

for fixed t and n → ∞. By (∗), the RHS has limit eiµt as n → ∞. But eiµt

is the CF of the constant µ. So by Lévy’s continuity theorem (i),

(X1 + . . .+Xn)/n→ µ (n→ ∞) in distribution.

Since the limit µ is constant, this and (b) give

(X1 + . . .+Xn)/n→ µ (n→ ∞) in probability. // [8]
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Q3 (Compound Poisson processes).
Let jumps {X1, · · · , Xn, · · ·} arrive at the epochs of a Poisson process with

rate λ [claims, in the insurance context used in lectures – call them claims
below, for definiteness]. Then the number N(t) of claims in the time-interval
[0, t] is Poisson P (λt). If the claims are iid with mean µ and CF ϕ(u), then
the claim total at time t is S(t) := X1 + · · ·XN(t), with CF

ψ(u) := E[exp{iuS(t)}] = E[exp{iu(X1 + · · ·+XN(t))]

=
∞∑
n=0

E[exp{iu(X1 + · · ·+XN(t))}|N(t) = n]P (N(t) = n)

=
∑

E[exp{iu(X1 + · · ·+Xn)}].e−λt(λt)n/n! = e−λt exp{λtϕ(u)}. [10]

From

ϕ(u) := E[eiuX ], ϕ′(u) = iE[XeiuX ], ϕ′′(u) = −E[X2eiuX ],

so
ϕ′(0) = iE[X] = iµ,

say,
ϕ′′(0) = −E[X2],

and similarly

ψ′(0) = iE[S(t)], ψ′′(0) = −E[S(t)2]. [3]

So differentiating,

ψ′(u) = ϕ′(u).λt.ψ(u); ψ′(0) = λt.ϕ′(0);

ψ′′(u) = λt.ϕ′′(u).ψ(u) + λt.ϕ′(u), ψ′(u)

= λtϕ′′(u)ψ(u) + (λt)2[ϕ′(u)]2ψ(u) :

ψ′′(0) = λtϕ′′(0) + (λt)2[ϕ′(0)]2. [3]

Combining,
E[S(t)] = λtE[X] = λtµ; [4]

var[S(t)] = −ψ′′(0) = [ψ′(0)]2

= −λtϕ′′(0) + (λt)2µ2 − (λt)2µ2

= λtE[X2]. [5]
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Q4 (Finite Markov chains).
A state i in a Markov chain is transient if the chain spends only finitely

long in i (a.s.), recurrent (or persistent) otherwise. [1,1]
The mean recurrence time of a state i is the expectation of the time Ti of

first return to i, starting at i. [1]
A recurrent state (one to which the chain returns infinitely often (i.o.),

a.s.) is positive if the mean recurrence time is finite, null otherwise. [1,1]

Theorem. For a finite Markov chain, it is impossible for all states to be
transient: a finite chain must contain at least one persistent state.

Proof. If the state-space is {1, · · · , N}, for each i and each n

1 =
N∑
j=1

pij(n). (a)

Let n→ ∞: if j is transient, the total expected time in it is finite:
∑

n pij(n) <
∞. So

pij(n) → 0 (n→ ∞). (b)

Were all states transient, letting n→ ∞ in (a) and using (b) would give the
contradiction 1 = 0. So not all states in a finite chain can be transient. // [7]

Theorem. A recurrent state j in a finite chain is positive (= non-null).

Proof. If the finite chain has state-space {1, · · · , N}, assume there is a null
state. Let C be the equivalence class containing it. Since C is closed, we can
consider the subchain induced on C. Then

1 =
∑

k∈C pik(n) (finite sum).
Let n → ∞: each pik(n) → 0, so RHS → 0, giving 1 = 0. This contra-

diction gives the non-existence of null states in a finite chain. // [7]

All states may be :
(i) transient. Trivial example: Z, moving to the right at each step. [2]
(ii) positive recurrent. Trivial example: Z, with each state a trap. [2]
(iii) null recurrent. Example: simple random walk on Z. [2]
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