PROBABILITY FOR STATISTICS: RESIT EXAMINATION
SOLUTIONS 2014

Q1. The chi-square distribution with n degrees of freedom, x*(n), is defined
as the distribution of X7 + ... + X2 where X; are iid N(0,1).
(i) For X standard normal, the MGF of its square X? is

2 1 & 2 1,2
M(t) = /em o(r)dr = — e e dy.
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We see that the integral converges only for ¢ < %, when (normal integral) it

is 1/4/(1—2t):  M(t)=1/y/(1—-2t) (t <3) for X ~ N(0,1).

So by definition of x*(n), the MGF of a x?*(n) is
1
M) =1/(1-20)2"  (t< 5)  for X~ x’(n). 8]
Replacing ¢ by it by analytic continuation, the characteristic function is

o(t) = 1/(1 — 2it)2".
(ii) First, the required density f(.) is a density, as f > 0 and [ f =1

1 > 1 1 S
flz)dx = 1—/ 2" Lexp(—=x)dx = —/ w2 texp(—u)du =1
/ (=) 22"T'(3n) Jo ( 2 ) T'(3n) Jo =)
(u := 1z), by definition of the Gamma function. Its MGF is

1 > 1 1 > 1
M(t) = 1—/ el g2 exp(—=x)dx = 1—/ e exp(—=x(1—-2t))dzx.
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Substitute u := 1z(1 — 2¢) in the integral. One obtains

1 > 1
M(t)=(1- 225)_;”.—./ uz" e du = (1 —2t) 2"
F(%”) 0
So it has the required MGF, so is the required density. // [9]

(iii) For n = 1, the mean is 1, because a x*(1) is the square of a standard
normal, and a standard normal has mean 0 and variance 1. The variance is
2, because the fourth moment of a standard normal X is 3, and

var(X?) = E[(X?)}] - [E(X?)])*=3—-1=2.

For general n, the mean is n because means add. [4]
The variance is 2n because variances add over independent summands.
(O, use (i), (ii).) 4]
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Q2 (Weak Law of Large Numbers, WLLN).
Random variables X,, converge in probability to X if

Ve>0, P(X,—X|>¢€)—0 (n — 00). [2]
They converge to X in distribution if

F.(x):=P(X, <zx)— F(z) = P(X <x) (n — 00),

at all continuity points x of F. [2]
(a) Convergence in probability implies convergence in distribution, but not
conversely in general. 1]
(b) The converse holds (so the two are equivalent) if the limit X is con-
stant. 1]

We need the following properties of the characteristic function (CF):
(i) (Lévy’s convergence theorem). Convergence in distribution of random
variables is equivalent to convergence of CFs (uniformly on compacta). [2]

(ii). The CF of an independent sum is the product of the CFs. [2]
(iii). If the random variable has k moments (finite), the CF can be expanded
as far as the t* term with negligible error term o(t*) for small . [2]
Recall that (for x real and z, — z complex)
A+ =, A+ s (n- o) (+) [2]
Theorem (Weak Law of Large Numbers, WLLN). [3]

If X; are iid with mean p,
1 n
— E Xp — p (n — o0) in probability.
n
1

Proof. 1f the X} have CF ¢(t), then as the mean pu exists ¢(t) = 1+iut +o(t)
as t — 0, by (iii). So by (ii) (X; + ...+ X,)/n has CF

Eexplit(Xy + ...+ X,)/n} = [6t/n)]" = [1 + % +o(1/n))",

for fixed ¢t and n — co. By (x), the RHS has limit " as n — oco. But e
is the CF of the constant p. So by Lévy’s continuity theorem (i),
(Xi+...+Xn)/n—p (n — o0) in distribution.
Since the limit p is constant, this and (b) give
(Xi+...+Xn)/n—p (n — 00) in probability. // 8]
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Q3 (Compound Poisson processes).

Let jumps { X7, -+, X,,, - -} arrive at the epochs of a Poisson process with
rate A [claims, in the insurance context used in lectures — call them claims
below, for definiteness]. Then the number N(¢) of claims in the time-interval
0,¢] is Poisson P(At). If the claims are iid with mean p and CF ¢(u), then
the claim total at time ¢ is S(t) :== X + - - - Xy, with CF

(u) := Elexp{iuS(t)}] = Elexp{iu(Xy +--- + Xn)]
ZE lexp{iu(X1 + - + Xnw) HN () =n]P(N(t) =n)

= Z Elexp{iu(X; + - 4+ X,)}.e MM)"/n! = e Mexp{Mto(u)}. [10]

From

o(u) = Ele™],  ¢/(u) =iB[Xe™ ], ¢"(u) = —E[X?e™],

¢'(0) = iB[X] = ip,
say,
¢"(0) = —E[X7],
and similarly
U'(0) =4E[S(t)],  ¢"(0) = —E[S(t)*. [3]

So differentiating,
() = ¢'(u) Atap(u); ¢'(0) = At.¢'(0);

() = At.¢" (u).p(u) + At.¢' (u), 9" (u)
= ¢ (u)p(u) + (At)[¢' ()] (u) -
Y"(0) = Atg"(0) + (A)*[¢(0)]*. 3]
Combining,
E[S(t)] = ME[X] = Ap; [4]

var[S(t)] = —¢"(0) = [¢'(0)]*
= =M"(0) + (W) — (A1) p?
= M E[X?]. 5]
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Q4 (Finite Markov chains).
A state ¢ in a Markov chain is transient if the chain spends only finitely

long in i (a.s.), recurrent (or persistent) otherwise. [1,1]
The mean recurrence time of a state i is the expectation of the time T; of
first return to 4, starting at i. 1]

A recurrent state (one to which the chain returns infinitely often (i.o.),
a.s.) is positive if the mean recurrence time is finite, null otherwise. [1,1]

Theorem. For a finite Markov chain, it is impossible for all states to be
transient: a finite chain must contain at least one persistent state.

Proof. 1f the state-space is {1,---, N}, for each ¢ and each n

L= _pij(n). (a)

Let n — oo: if j is transient, the total expected time in it is finite: Y p;;(n) <
00. S0

pij(n) =0 (n — 00). (b)
Were all states transient, letting n — oo in (a) and using (b) would give the
contradiction 1 = 0. So not all states in a finite chain can be transient. // [7]

Theorem. A recurrent state j in a finite chain is positive (= non-null).

Proof. 1f the finite chain has state-space {1,---, N}, assume there is a null
state. Let C be the equivalence class containing it. Since C'is closed, we can
consider the subchain induced on C'. Then
L=23 eccpi(n) (finite sum).
Let n — oo: each pi(n) — 0, so RHS — 0, giving 1 = 0. This contra-
diction gives the non-existence of null states in a finite chain. // (7]

All states may be :

(i) transient. Trivial example: Z, moving to the right at each step. [2]
(ii) positive recurrent. Trivial example: Z, with each state a trap. [2]
(iii) null recurrent. Example: simple random walk on Z. [2]
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