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SOLUTIONS 7 7.12.2015

Q1: Hypergeometric distribution. (i) The number of subsets of size n of a

set of size 2n is
(
2n
n

)
. If this subset contains k white balls, these can be

chosen in
(
n
k

)
ways; the remaining n − k balls are black, and can be chosen

in
(

n
n−k

)
=
(
n
k

)
ways, giving

(
n
k

)2
ways altogether; sum over k.

(ii) ∑
i

(
2n

i

)
xi = (

∑
j

(
n

j

)
xj)(

∑
k

(
n

k

)
xk).

Extracting the coefficient of xn gives
(
2n
n

)
on the left and

∑
j

(
n
j

)(
n

n−j

)
=∑

j

(
n
j

)2
on the right.

(iii) The number of routes from the vertex to the central element in row 2n

is
(
2n
n

)
. There are

(
n
k

)
routes from the vertex to the element

(
n
k

)
in row n.

By symmetry of the ”square” with top corner the vertex and bottom corner(
2n
n

)
about its horizontal diagonal, the number of routes from

(
n
k

)
to
(
2n
n

)
is(

n
k

)
. So there are

(
n
k

)2
routes passing through

(
n
k

)
; sum over k.

Q2: Bernoulli-Laplace urn. With π the hypergeometric distribution given
(this is a probability distribution, by Q1),

πipi,i+1 =
1(
2d
d

)(d
i

)2

.
(d− i

d

)2
=

1(
2d
d

)(d− 1

i

)2

,

and similarly

πi+1pi+1,i =
1(
2d
d

)( d

i+ 1

)2

.
(i+ 1

d

)2
=

1(
2d
d

)(d− 1

i

)2

,

proving detailed balance, and so reversibility. Assuming reversibility, we can
use detailed balance to calculate the invariant distribution:

πi =
π0(
1
d

)2 .
(
1− 1

d

)2
(
2
d

)2 . . . . .

(
1− i−1

d

)2
(
i
d

)2 = π0.
(d(d− 1) . . . (d− i+ 1))2

(1.2 . . . .i)2
= π0

(
d

i

)2

.
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Then
∑

i πi = 1 gives

π0

∑
i

(
d

i

)2

= π0

(
2d

d

)2

= 1, π0 = 1/

(
2d

d

)
, πi =

(
d

i

)2

/

(
2d

d

)
. //

Q3: Bernoulli-Laplace urn (continued). πi = 1/µi by the Erdös-Feller-
Pollard theorem (L19), so

µ0 = 1/π0 =

(
2d

d

)
.

By Stirling’s formula,

µ0 ∼
√
2πe−2d2d2d+

1
2

(
√
2πe−ddd+

1
2 )2

=
4d√
πd

.

Now as d is already very large (of the order of Avogadro’s number 6× 1023),
4d is astronomically vast – effectively infinite.

The interpretation of this in Statistical Mechanics is that µ0 is the mean
recurrence time of state 0, when all the 2d gas molecules are in one half of
the container. Although this state is certain to recur (indeed, infinitely of-
ten), its mean recurrence time is so vast as to be effectively infinite – which
explains why we do not see such states recurring in practice! This reconciles
the theoretical reversibility of the model with the irreversible behaviour we
observe when gases diffuse, etc. This was the Ehrenfests’ motivation for their
model, in 1912.
Note.
Entropy.

Relevant here is the concept of entropy – a measure of disorder. This was
introduced by Rudolf CLAUSIUS (1922-1888), in 1865, who formulated the
Fist Law of Thermodynamics (Law of Conservation of Energy) and Second
Law of Thermodynamics (entropy increases – things become more disor-
dered):
1. Die Energie der Welt ist konstant (The energy of the world [the universe]
is constant).
2. Die Entropie der Welt strebt einem Maximum zu (The entropy of the
world [the universe] strives towards a maximum).
This is worth learning – it is the most famous two-sentence passage in the
history of science.
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Boltzmann, the Bernoulli-Laplace urn and the Ehrenfest urn.
The following is a tragic story. The Bernoulli-Laplace urn (BL) originates

in the work of Daniel BERNOULLI (1700 - 1782) in 1770, and Pierre-Simone
de LAPLACE (1749 - 1827) in 1810-11 and 1812. It is more complicated than
its relative, the Ehrenfest urn (E), which was specifically developed to rec-
oncile the irreversible macrodynamics but reversible microdynamics above.

In addition to Clausius and Thermodynamics, the relevant area here is
Statistical Mechanics, largely the creation of three people: the German Lud-
wig BOLTZMANN (1844 - 1906; H-theorem, 1872: entropy increases), the
Scotsman James Clerk MAXWELL (1831 - 1916), and the American Josiah
Willard GIBBS (1839 - 1903).

Atoms and molecules were not experimentally observable at that time,
and their existence was aggressively challenged by some scientists of the pe-
riod, particularly the German physicist Ernst Mach (1838 - 1916: ”I do not
believe in atoms”, 1897), now remembered mainly for Mach 1, the speed
of sound, Mach 2, double it, etc. Had Boltzmann known of BL, he would
have been able to use it to refute Mach’s constant attacks. Similarly had
E been available at that time (though this story is part of the motivation
for the development of E). Boltzmann was a fine scientist, but not a great
debater; he unfortunately saw it as his duty to take on his critics in debate;
his mental health collapsed under the strain; he tragically committed suicide.
References:
David LINDLEY: Boltzmann’s atom: The great debate that launched a rev-
olution in physics. The Free Press, 2001;
Martin JACOBSEN: Laplace and the origin of the Ornstein-Uhlenbeck pro-
cess. Bernoulli 2.3 (1996), 271 - 286.

One moral of this sad story is that it is all too easy for work developed
in one field, and in one period, to be overlooked by later workers in other
areas. Bernoulli and Laplace could hardly have anticipated Statistical Me-
chanics, or Thermodynamics (then still in its early days – work of Carnot,
etc.). Equally, Boltzmann, Maxwell and Gibbs could hardly have known all
the probability then available, still less seen how to apply it.

The existence of atoms and molecules was established indirectly, start-
ing with Einstein’s work of 1905 on Brownian motion and diffusion (2005
was Einstein Year, in honour of his three pioneering papers – on this, the
photo-electric effect (for which he got the Nobel Prize) and special relativ-
ity). There was related work by Langevin in 1914, and Smoluchowski in 1918
(‘Einstein-Smoluchowski theory).
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Q4: Branching processes.
(i) Z2 is the sum of a random number, Z1, of independent copies of Z. So

P2(s) := E[sZ2 ] =
∞∑
k=0

E[sZ2 |Z1 = k]P (Z1 = k).

Now when Z1 = k, Z2 is a sum of k independent copies of Z, each with PGF
P (s), so has (conditional) PGF P (s)k. So

P2(s) =
∞∑
0

pkP (s)k = P (P (s)).

(ii) Similarly, or by induction on n, Zn has PGF Pn.
(iii)

P ′
n(s) = P ′(Pn−1(s)).P

′
n−1(s).

So letting s = 1 (R > 1), or s ↑ 1 (R = 1) and using Abel’s Continuity
Theorem, since Pn−1, being a PGF, has value 1 at 1, P ′

n(1) = P ′(1).P ′
n−1(1) =

µ.P ′
n−1(1), so by induction

P ′
n(1) = µn : E[Zn] = µn.

NHB
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