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I. REGRESSION

1. LEAST SQUARES
The idea of regression is to take some sample of size n from some unknown

population (typically n is large – the larger the better), and seek how best to
represent it in terms of a smaller number of variables, typically involving p
parameters (p to be kept as small as possible, to give a parsimonious repre-
sentation of the data – so p is much smaller than n, p << n). Usually we will
have p explanatory variables, and represent the data as a linear combination
of them (the coefficients being the parameters) plus some random error, as
best we can. To do this, we use the method of least squares, and choose
the coefficients so as to minimise the sum of squares (SS) of the differences
between the observed data points and the linear combination. This gives us
a fitted value; what is left over is called a residual; thus

data = true value + error = fitted value + residual.

If the data forms an n-vector y and the parameters form a p-vector β, the
model equation is

y = Aβ + ϵ,

where A is an n × p matrix of constants (the design matrix), and ϵ is an n-
vector of errors. In the full-rank case (where A has rank p), it can be shown
([BF], 3.1) that the least-squares estimates (LSEs) of β are

β̂ = (ATA)−1ATy,

and (Gauss-Markov Theorem) that this gives the minimum-variance unbi-
ased (= ‘best’) linear estimator (or BLUE): in this sense least-squares is best.

Geometrically, the Method of Least Squares projects n-dimensional real-
ity onto the best approximating p-dimensional subspace. Indeed, the key role
is played by the projection matrix P = A(ATA)−1AT (or P = AC−1AT with
C := ATA the information matrix; P is n × n, C is p × p). P is also called
the hat matrix, H, as it projects the data y onto the fitted values ŷ = Aβ̂.

To make good statistical sense of this, we need a statistical model for the
error structure. We will use the multivariate normal distribution (Section 3),
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whose estimation theory follows in Section 4.
The most basic case is p = 2, where one fits a line (two parameters, slope

and intercept) through n data points in the plane. One can show (see e.g.
[BF], 1.2) that the least-squares (best) line is

y = a+ bx, b =
xy − x.y

x2 − x2
= sxy/sxx = rxysy/sx, a = y − bx.

(here sxy is the sample covariance between x and y, sxx = s2x is the sample
variance of x, rxy = sxy/(sxsy) the sample correlation coefficient). This is
the sample regression line. By LLN, its large-sample limit is the (population)
regression line,

y = α+ βx, β = ρσ2/σ1, α = Ey− βEx : y−Ey = (ρσ2/σ1)(x−Ex).

The multivariate normal reduces in this case to the bivariate normal in Sec-
tion 2; we treat this in full because of its fundamental importance and of
how well it illustrates the general case.

Motivating examples:
1. CAPM. The capital asset pricing model looks at individual risky assets
and compares them with ‘the market’, or some proxy for it such as an index.
One seeks to ‘pick winners’ by maximising ‘beta’, or the slope of the linear
trend of asset price versus market price.
2. Examination scores (BF, 1.4). Here x is the ‘incoming score’ of an entrant
to an elite academic programme, y is the ‘graduating score’; the question is
how well does the institution pick its intake (i.e., how well does x predict y).
3. Galton’s height data (BF, 1.3). Here y = offspring’s height (adult sons,
say), x = average of parents’ heights.

2. THE BIVARIATE NORMAL DISTRIBUTION
Recall two of the key ingredients of statistics:
a. The normal distribution, N(µ, σ2):

f(x) =
1

σ
√
2π

exp{−1

2
(x− µ)2/σ2},

which has mean EX = µ and variance varX = σ2.
b. Linear regression by the method of least squares. This is for two-dimensional
(or bivariate) data (X1, Y1), . . . , (Xn, Yn). Two questions arise: (i) Why lin-
ear? (ii) What (if any) is the two-dimensional analogue of the normal law?
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Mathematical preliminaries. Writing

ϕ(x) :=
1√
2π

exp{−1

2
x2}

for the standard normal density,
∫
for

∫∞
−∞, we shall need

(i) recognising normal integrals: (a)
∫
ϕ(x)dx = 1 (‘normal density’, (b)∫

xϕ(x)dx = 0 (‘normal mean’ - or, ‘symmetry’), (c)
∫
x2ϕ(x)dx = 1 (‘normal

variance’),
(ii) completing the square: as for solving quadratic equations!

In view of the work above, we need an analogue in two dimensions of the
normal distribution N(µ, σ2) in one dimension. Just as in one dimension we
need two parameters, µ and σ, in two dimensions we must expect to need
five, by above.

Consider the following bivariate density:

f(x, y) = c exp{−1

2
Q(x, y)},

where c is a constant, Q a positive definite quadratic form in x and y:

c =
1

2πσ1σ2

√
1− ρ2

, Q =
1

1− ρ2

[(x− µ1

σ 1

)2
−2ρ

(x− µ1

σ1

)(y − µ2

σ2

)
+
(y − µ2

σ2

)2]
.

Here σi > 0, µi are real, −1 < ρ < 1. Since f is clearly non-negative, to show
that f is a (probability) density (function) (in two dimensions), it suffices to
show that f integrates to 1:∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy = 1, or

∫ ∫
f = 1.

Write
f1(x) :=

∫ ∞

−∞
f(x, y)dy, f2(y) :=

∫ ∞

−∞
f(x, y)dx.

Then to show
∫ ∫

f = 1, we need to show
∫∞
−∞ f1(x)dx = 1 (or

∫∞
−∞ f2(y)dy =

1). Then f1, f2 are densities, in one dimension. If f(x, y) = fX,Y (x, y) is the
joint density of two random variables X, Y , then f1(x) is the density fX(x)
of X, f2(y) the density fY (y) of Y (f1, f2, or fX , fY , are called the marginal
densities of the joint density f , or fX,Y ).

To perform the integrations, we have to complete the square. We have

(1− ρ2)Q ≡
[(y − µ2

σ2

)
− ρ

(x− µ1

σ1

)]2
+ (1− ρ2)

(x− µ1

σ1

)2
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(reducing the number of occurrences of y to 1, as we intend to integrate out
y first). Then (taking the terms free of y out through the y-integral)

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

∫ ∞

−∞

1

σ2

√
2π

√
1− ρ2

exp
(−1

2
(y − cx)

2

σ2
2(1− ρ2)

)
dy,

(∗)
where

cx := µ2 + ρ
σ2

σ1

(x− µ1).

The integral is 1 (‘normal density’). So

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

,

which integrates to 1 (‘normal density’), proving
Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal
density functions f1(x), f2(y) (one-dimensional). So we can write

f(x, y) = fX,Y (x, y), f1(x) = fX(x), f2(y) = fY (y).

Fact 2. X, Y are normal: X is N(µ1, σ
2
1), Y is N(µ2, σ

2
2). For, we showed

f1 = fX to be the N(µ1, σ
2
1) density above, and similarly for Y by symmetry.

Fact 3. EX = µ1, EY = µ2, varX = σ2
1, varY = σ2

2.
This identifies four of the five parameters: two means µi, two variances σ2

i .
Next, recall the definition of conditional probability:

P (A|B) := P (A ∩B)/P (B).

In the discrete case, if X, Y take possible values xi, yj with probabilities
fX(xi), fY (yj), (X,Y ) takes possible values (xi, yj) with probabilities fX,Y (xi, yj):

fX(xi) = P (X = xi) = ΣjP (X = xi, Y = yj) = ΣjfX,Y (xi, yj).

Then the conditional distribution of Y given X = xi is

fY |X(yj|xi) = P (Y = yj & X = xi)/P (X = xi) = fX,Y (xi, yj)/ΣjfX,Y (xi, yj).

In the density case, we have to replace sums by integrals. Thus the con-
ditional density of Y given X = x is

fY |X(y|x) := fX,Y (x, y)/fX(x) = fX,Y (x, y)/
∫ ∞

−∞
fX,Y (x, y)dy.

Returning to the bivariate normal:
Fact 4. The conditional distribution of y given X = x is N(µ2 + ρσ2

σ1
(x −

µ1), σ2
2(1− ρ2)).
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