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7. AUTOREGRESSIVEMOVINGAVERAGE PROCESSES ARMA(p,q).

We can combine the AR(p) and MA(q) models as follows:

Xt =
∑p

1
ϕiXt−i + ϵt +

∑q

1
θiϵt−i, (ϵt) WN(σ2)

or
ϕ(B)Xt = θ(B)ϵt,

where

ϕ(λ) = 1− ϕ1λ− · · · − ϕpλ
p, θ(λ) = 1 + θ1λ+ · · ·+ θqλ

q.

We shall assume that the roots of ϕ(λ and θ(λ) all lie outside the unit disc.
Then, as in the Conditions for Stationarity and Invertibility, the process (Xt)
is both stationary and invertible, and

Xt = (ϕ(B))−1θ(B)ϵt.

Now θ(λ)/ϕ(λ) is a rational function (ratio of polynomials). We shall assume
that θ(λ), ϕ(λ) have no common factors. For if they do:
(i) the common factors can be cancelled from (ϕ(B))−1θ(B), leaving an equiv-
alent model but with fewer parameters - so better, by the Principle of Par-
simony;
(ii) we have no hope of identifying parameters in the factors thus cancelled.
Thus the model is non-identifiable. So to get an identifiable model, we need
to perform all possible cancellations. We assume this done in what follows.
Note. Generally in statistics, we try to work with identifiable models. These
are the ones in which the task of estimating parameters from the data is
possible in principle. Non-identifiable models are degenerate, or at least
problematic.

Of course:

ARMA(p, 0) ≡ AR(p), ARMA(0, q) ≡MA(q).

ARMA(1,1).
Xt = ϕXt−1 + ϵt + θϵt−1 :
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(1− ϕB)Xt = (1 + θB)ϵt.

Condition for Stationarity: |ϕ| < 1 (assumed).
Condition for Invertibility: |θ| < 1 (assumed).

Xt = (1− ϕB)−1(1 + θB)ϵt = (1 + θB)(
∑∞

0
ϕiBi)ϵt

= ϵt +
∑∞

1
ϕiBiϵt + θ

∑∞
0
ϕiBi+1ϵt = ϵt + (θ + ϕ)

∑∞
1
ϕi−1Biϵt :

Xt = ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i.

Variance: lag τ = 0. Square and take expectations. The ϵs are uncorrelated
with variance σ2, so

γ0 = varXt = E[X2
t ] = σ2 + (ϕ+ θ)2

∑∞
1
ϕ2(i−1)σ2

= σ2 +
(ϕ+ θ)2σ2

(1− ϕ2)
= σ2(1− ϕ2 + ϕ2 + 2ϕθ + θ2)/(1− ϕ2) :

γ0 = σ2(1 + 2ϕθ + θ2)/(1− ϕ2).

Covariance: lag τ ≥ 1.

Xt−τ = ϵt−τ + (ϕ+ θ)
∑∞

j=1
ϕj−1ϵt−τ−j.

Multiply the series for Xt and Xt−τ and take expectations:

γτ = cov(Xt, Xt−τ ) = E[XtXt−τ ],

which is

E{[ϵt + (ϕ+ θ)
∑∞

i=1
ϕi−1ϵt−i].[ϵt−τ + (ϕ+ θ)

∑∞
j=1
ϕj−1ϵt−τ−j]}.

The ϵt-term in the first [.] gives no contribution. The i-term in the first [.]
for i = τ and the ϵt−τ in the second [.] give (ϕ + θ)ϕτ−1σ2. The product
of the i term in the first sum and the j term in the second contributes for
i = τ + j; for j ≥ 1 it gives (ϕ+ θ)2ϕτ+j−1.ϕj−1.σ2. So

γτ = (ϕ+ θ)ϕτ−1σ2 + (ϕ+ θ)2ϕτσ2
∑∞

j=1
ϕ2(j−1).

The geometric series is 1/(1− ϕ2) as before, so for τ ≥ 1

γτ =
(ϕ+ θ)ϕτ−1σ2

(1− ϕ2)
.[1−ϕ2+ϕ(ϕ+θ)] : γτ = σ2(ϕ+θ)(1+ϕθ)ϕτ−1/(1−ϕ2).
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Autocorrelation. The autocorrelation ρτ := γτ/γ0 is thus

ρ0 = 1, ρτ =
(ϕ+ θ)(1 + ϕθ)

(1 + 2ϕθ + θ2)
.ϕτ−1 (τ ≥ 1).

Note that

ρ1 = (ϕ+ θ)(1 + ϕθ)/(1 + 2ϕθ + θ2), ρτ/ρτ−1 = ϕ (τ ≥ 1) :

ρ0 = 1 always, ρ1 is as above, and then ρτ decreases geometrically with com-
mon ratio ϕ. This is the signature of an AR(1, 1) process: if the correlogram
looks geometric after the r1 term, to within sampling error, then an AR(1, 1)
model is suggested.

8. ARMA MODELLING; THE GENERAL LINEAR PROCESS;
WOLD DECOMPOSITION

The model equation ϕ(B)Xt = θ(B)ϵt for an ARMA(p, q) process may
sometimes have a direct interpretation in terms of the mechanism generating
the model. Usually, however, ARMA models are tried and fitted to the
data empirically. Their principal use is that ARMA(p, q) models are so
flexible: a wide range of different examples may be satisfactorily fitted by
an ARMA model with small values of p and q, so with a small number
p+ q of parameters. This ability to use a small number of parameters is an
advantage, by the Principle of Parsimony. The drawback is that the ARMA
model may not correspond well with the actual data-generating mechanism,
and so the p + q parameters ϕi, θj may lack any direct interpretation - or
indeed, any basis in reality. An alternative approach is to try to build a
model whose structure reflects the actual data-generating mechanism. This
leads to structural time-series models (Harvey [H], 5.3), state-space models
and the Kalman filter ([H], Ch. 4), but these are too advanced for a first
course on TS such as this.
Interpretation of parameters. Recall the ARMA(p, q) model

Xt =
∑p

i=1
ϕiXt−i + ϵt +

∑q

j=1
θjϵt−j, (ϵt) WN(σ2). (∗)

Think, for example, of Xt as representing the value at time t of some partic-
ular economic/financial/business variable - the current price of a particular
company’s stock, or of some particular commodity, say. Think of ϵt as rep-
resenting the current value of some general indicator of the overall state of
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the economy. We are trying to predict the value of the particular variable
Xt, given information of two kinds:
(i) on the past values of the X-process (particular information),
(ii) on the past and present values of the ϵ-process (general information).
Then (relatively) large values of a coefficient ϕi, or θj, indicate that this
variable - particular information at lag i, or general information at lag j - is
important in determining the variable Xt of interest. By contrast, a (rela-
tively) low value suggests that we may be able to discard this variable.

Another illustration, from geographical or climatic data rather than an
economic/financial setting, is in modelling of river flow, or depth. Here Xt

might be the depth of a particular river at time t; ϵt might be some general
indicator of recent rainfall in the area - e.g., precipitation at some weather
station in the river’s watershed.
The General Linear Process. An infinite-order MA process

Xt − µ =
∑∞

i=0
ϕiϵt−i,

∑
ϕ2
i <∞, (ϵt) WN

is called a general linear process. Both AR and MA processes are special
cases, as we have seen. But since there are infinitely many parameters ϕi

in the above, the model is only useful in practice if it reduces to a finite-
dimensional model such as an AR(p),MA(q) or ARMA(p, q).

However, the general linear process is important theoretically, as we now
explain. Consider a stationary process (Xt) (the general linear process is
stationary), and write σ2 for the variance of Xt (rather than ϵt, as before).
Then σ2 measures the variability in Xt. Suppose now that we are given the
values of Xs up to Xt−q. This knowledge makes Xt less variable, so

σ2
q := var(Xt| · · · , Xt−q−2, Xt−q−1, Xt−q) ≤ σ2.

As we increase q, the information given decreases (recedes further into the
past), so Xt given this information becomes more variable: σ2

q increases with
q. So

0 ≤ σ2
q ↑ σ2

∞ ≤ σ2 (q → ∞).

One possibility is that σq = 0 for all q, and then σ∞ = 0 also. Now if
a random variable has zero variance, it is constant (with probability one) –
i.e., non-random or deterministic. The case σq ≡ 0 does occur, in cases such
as

Xt = a cos(ωt+ b),
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where a, b, ω may be random variables, but do not depend on time. Then
three values of Xt are enough to find the three values a, b, ω, and then all
future values of Xt are completely determined. In this case, each Xt is a
random variable, but (Xt) as a stochastic process is clearly degenerate: there
is no ‘new randomness’, and the dependence of randomness on time – the
essence of a stochastic process (and even more, of a time series!) – is trivial.
Such a process is called singular or purely deterministic.

At the other extreme, we may have

σq ↑ σ∞ = σ (q → ∞).

Then as information given recedes into the past, its influence dies away to
nothing – as it should. Such a process is called purely indeterministic.

We quote the

THEOREM (Wold Decomposition Theorem: Wold (1938)). A
(strictly) stationary stochastic process (Xt) possesses a unique decomposition

Xt = Yt + Zt,

where
(i) Yt is purely deterministic,
(ii) Zt is purely indeterministic,
(iii) Yt, Zt are uncorrelated,
(iv) Zt is a general linear process,

Zt =
∑

ϕiϵt−i,

with the ϵt uncorrelated.

This result is due to the Swedish statistician Hermann Wold (1908-1992)
in 1938. It shows that infinite moving-average representations

∑
ϕiϵt−i, far

from being special, are general enough to handle the stationary case apart
from degeneracies such as purely deterministic processes. For proof, see e.g.
J. L. DOOB (1953): Stochastic processes, Wiley (XII.4, Th. 4.2).

COROLLARY. If (Xt) has no purely deterministic component – so

Xt =
∑∞

i=0
ψiϵt−i,

∑
ψ2
i <∞, (ϵt) WN(σ2) −−
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then
(i) γk := cov(Xt, Xt+k) = σ2∑∞

i=0ψiψi+k,
(ii) γk → 0, ρk := corr(Xt, Xt+k) → 0 (k → ∞): the autocovariance and
autocorrelation tend to zero as the lag k increases.

Proof.

γk = cov(Xt, Xt+k) = E(Xt, Xt+k) = E[(
∑∞

i=0
ψiϵt−i)(

∑∞
j=0
ψjϵt−k−j)]

=
∑∑

i,j
ψiψjE(ϵt−iϵt−k−j).

Here E(.) = 0 unless i = j + k, when it is σ2, so

γk = σ2
∑

j=0
ψjψj+k,

proving (i). For (ii), use the Cauchy-Schwarz inequality:

|γk| = σ2|
∑∞

i=0
ψiψi+k| ≤ (

∑∞
i=0
ψ2
i )

1/2
∑∞

i=0
ψ2
i+k)

1/2 → 0 (k → ∞),

as
∑
ψ2
i <∞, so

∑∞
i=kψ

2
i is the tail of a convergent series. //

More general models. We mention a few generalisations here.
1. ARIMA(p, d, q). The ‘I’ here stands for ‘integrated’; the d for how many
times. Differencing d times (e.g. to give stationarity) gives ARMA(p, q).
2. SARIMA. Here ‘S’ is for ‘seasonal’: many economic time series have a
seasonal effect (e.g., agriculture, building, tourism).
3. ARCH and GARCH. The model equations are (with Zt ind. N(0, 1))

Xt = σtZt, σ2
t = α0 +

p∑
1

αiX
2
i−1, (ARCH(p))

while in GARCH(p, q) the σ2
t term becomes

σ2
t = α0 +

p∑
1

αiX
2
i−1 +

q∑
1

βjX
2
t−j. (ARCH(p))

The names stand for (generalised) autoregressive conditionally heteroscedas-
tic (= variable variance). These are widely used in Econometrics, to model
volatility clustering – the common tendency for periods of high volatility, or
variability, to cluster together in time. See e.g. Harvey 8.3, [BF] 9.4, [BFK].
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