smfl11.tex Lecture 11. 11.2.2011

III. MULTIVARIATE ANALYSIS

1. PRELIMINARIES: MATRIX THEORY.

Modern Algebra splits into two main parts: Groups, Rings and Fields on the one hand, and Linear Algebra on the other. Linear Algebra deals with *linear transformations* between *vector spaces*. We confine attention here to the *finite-dimensional* case; the infinite-dimensional case needs Functional Analysis and is harder. Broadly, Parametric Statistics can be handled in finitely many dimensions, Non-Parametric Statistics needs infinitely many.

Given a finite-dimensional vector space V, we can always choose a *basis* (a maximal set of linearly independent vectors). All such bases contain the same number of vectors; if this is n, the vector space has *dimension* n.

Given two finite-dimensional vector spaces and a linear transformation α between the two, choice of bases (e_1, \ldots, e_m) and (f_1, \ldots, f_n) determines a matrix $A = (a_{ij})$ by

$$e_i \alpha = \sum_{j=1}^n a_{ij} f_j \qquad (i = 1, \dots, m).$$

We write

$$A = \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{array}\right),$$

or $A = (a_{ij})$ more briefly. The a_{ij} are called the *elements* of the matrix; we write $A \ (m \times n)$ for $A \ (m \text{ rows}, n \text{ columns})$.

Matrices may be subjected to various operations: 1. Matrix addition. If $A = (a_{ij}), B = (b_{ij})$ have the same size, then

$$A \pm B := (a_{ij} \pm b_{ij})$$

(this represents $\alpha \pm \beta$ if α , β are the underlying linear transformations). 2. Scalar multiplication. If $A = (a_{ij})$ and c is a scalar (real, unless we specify complex), then the matrix

$$cA := (ca_{ij})$$

represents $c\alpha$.

3. Matrix multiplication. If A is $m \times n$, B is $n \times p$, then C := AB is $n \times p$, where $C = (c_{ij})$ and

$$c_{ij} := \sum_{k=1}^{n} a_{ik} b_{kj}$$

(this represents the product, or composition, $\alpha\beta$ or $x \mapsto x\alpha\beta$).

Note. Matrix multiplication is non-commutative! $-AB \neq BA$ in general, even when both are defined (which can only happen for A, B square of the same size).

Partitioning.

We may *partition* a matrix A in various ways. for instance, A as above partitions as

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right),$$

where A_{11} is $r \times s$, A_{12} is $r \times (n-s)$, A_{21} is $(m-r) \times s$, A_{22} is $(m-r) \times (n-s)$, etc. In the same way, A may be partitioned as

(i) a column of its rows; (ii) a row of its columns. $P_{am}k$

Rank.

The maximal number of linearly independent rows of A is always the same as the maximal number of independent columns. This number, r, is called the rank of A. When $r = \min(m, n)$ is as big as it could be, the matrix A has full rank.

Inverses.

When a square matrix A $(n \times n)$ has full rank n, the linear transformation $\alpha : V \to V$ that it represents is *invertible*, and so has an inverse map $\alpha^{-1} : V \to V$ such that $\alpha \alpha^{-1} = \alpha^{-1} \alpha = i$, the identity map, and α^{-1} is also a linear transformation. The matrix representing α^{-1} is called A^{-1} , the *inverse matrix* of A:

$$AA^{-1} = A^{-1}A = I,$$

the *identity matrix* of size n: $I = (\delta_{ij})$ ($\delta_{ij} = 1$ if i = j, 0 otherwise – the *Kronecker delta*).

Transpose.

If $A = (a_{ij})$, the *transpose* is A', or $A^T := (a_{ji})$. Note that, when all the matrices are defined,

$$(AB)^{-1} = B^{-1}A^{-1}$$

(as this gives $(AB)(AB)^{-1} = ABB^{-1}A^{-1} = AA^{-1} = I$, and similarly $(AB)^{-1}(AB) = I$, as required), and

$$(AB)^T = B^T A^T$$

(as this has (i, j) element $\sum_k (B^T)_{ik} (A^T)_{kj} = \sum_k b_{ki} a_{jk} = \sum_k a_{jk} b_{ki} = (AB)_{ji}$, as required).

Determinants.

There are n! permutations σ of the set

$$N_n := \{1, 2, \dots, n\}$$

– bijections $\sigma : N_n \to N_n$. Each permutation may be decomposed into a product of *transpositions* (interchanges of two elements), and the *parity* of the number of transpositions in any such decomposition is always the same. Call σ odd or even according as this number is odd or even. Write

sgn
$$\sigma := 1$$
 if σ is even, -1 if σ is odd

for the sign or signum of σ . For A a square matrix of size n, the function

det A, or
$$|A| := \sum_{\sigma} (-1) \operatorname{sgn} \sigma_{a_{1,\sigma(1)}a_{2,\sigma(2)} \dots a_{n,\sigma(n)}},$$

where the summation extends over all n! permutations, is called the *determinant* of A, det A or |A|.

Properties.

1. $|A^T| = |A|$.

Proof. If σ^{-1} is the inverse permutation to σ , σ and σ^{-1} have the same parity, so the sums for their determinants have the same terms, but in a different order.

2. If two rows (or columns) of A coincide, |A| = 0.

Proof. Interchanging two rows changes the sign of |A| (extra transposition, which changes the parity), but leaves A and so |A| unaltered (as the two rows coincide). So |A| = -|A|, giving |A| = 0.

3. |A| depends linearly on each row (or column) (det is a *multilinear* function, and this area is called Multilinear Algebra).

4. If A is $n \times n$, |A| = 0 iff A has rank r < n.

5. Multiplication Theorem for Determinants. If A, B are $n \times n$ (so AB, and BA, are defined),

$$|AB| = |A|.|B|.$$

6. Inverses again.

If A is $n \times n$, the (i, j) minor is the determinant A_{ij} of the $(n - 1) \times (n - 1)$ submatrix obtained by deleting the *i*th row and *j*th column. The (i, j) cofactor, or signed minor, is $(-)^{i+j}A_{ij}$ (the signs follow a chessboard or chequerboard pattern, with + in the top left-hand corner),

The matrix $B = (b_{ij})$, where

$$b_{ij} := (-)^{i+j} A_{ji} / |A|,$$

ia the *inverse matrix* A^{-1} of A, defined iff $|A| \neq 0$ (A is called *singular* if |A| = 0, *non-singular* otherwise (thus a square matrix has a determinant iff it is non-singular), and

$$AA^{-1} = A^{-1}A = I$$

as before:

inverse = transposed matrix of cofactors over determinant.

Proof. With B as above, $C := AB = (c_{ij})$,

$$c_{ij} = \sum_{k} a_{ik} b_{kj} = \sum_{k} a_{ik} (-)^{k+j} A_{jk} / |A|.$$

If i = j, the RHS is 1 (expansion of |A| by its *i*th row). If not, the RHS is 0 (expansion of the determinant of a matrix with two identical rows). So $c_{ij} = \delta_{ij}$, so C = AB = I. Similarly, BA = I. Solution of linear equations.

If A is $n \times n$, the linear equations

$$Ax = b$$

possess a unique solution x iff A is non-singular (A^{-1} exists), and then

$$x = A^{-1}b.$$

If A is singular (A has rank r < n), then *either* there is no solution (the equations are *inconsistent*), or there are *infinitely many* solutions (some equations are *redundant*, and one can give some of the elements x_i arbitrary values and solve for the rest). What decides between these two cases is the rank of the *augmented* matrix (A, b) obtained by adjoining the vector b as a final column.