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III. MULTIVARIATE ANALYSIS

1. PRELIMINARIES: MATRIX THEORY.
Modern Algebra splits into two main parts: Groups, Rings and Fields on

the one hand, and Linear Algebra on the other. Linear Algebra deals with
linear transformations between vector spaces. We confine attention here to
the finite-dimensional case; the infinite-dimensional case needs Functional
Analysis and is harder. Broadly, Parametric Statistics can be handled in
finitely many dimensions, Non-Parametric Statistics needs infinitely many.

Given a finite-dimensional vector space V , we can always choose a basis
(a maximal set of linearly independent vectors). All such bases contain the
same number of vectors; if this is n, the vector space has dimension n.

Given two finite-dimensional vector spaces and a linear transformation α
between the two, choice of bases (e1, . . . , em) and (f1, . . . , fn) determines a
matrix A = (aij) by

eiα =
n∑

j=1

aijfj (i = 1, . . . ,m).

We write

A =


a11 . . . a1n
...

...
am1 . . . amn

 ,

or A = (aij) more briefly. The aij are called the elements of the matrix; we
write A (m× n) for A (m rows, n columns).

Matrices may be subjected to various operations:
1. Matrix addition. If A = (aij), B = (bij) have the same size, then

A±B := (aij ± bij)

(this represents α± β if α, β are the underlying linear transformations).
2. Scalar multiplication. If A = (aij) and c is a scalar (real, unless we specify
complex), then the matrix

cA := (caij)
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represents cα.
3. Matrix multiplication. If A is m× n, B is n× p, then C := AB is n× p,
where C = (cij) and

cij :=
n∑

k=1

aikbkj

(this represents the product, or composition, αβ or x 7→ xαβ).
Note. Matrix multiplication is non-commutative! – AB ̸= BA in general,
even when both are defined (which can only happen for A, B square of the
same size).
Partitioning.

We may partition a matrix A in various ways. for instance, A as above
partitions as

A =

(
A11 A12

A21 A22

)
,

where A11 is r×s, A12 is r×(n−s), A21 is (m−r)×s, A22 is (m−r)×(n−s),
etc. In the same way, A may be partitioned as
(i) a column of its rows; (ii) a row of its columns.
Rank.

The maximal number of linearly independent rows of A is always the
same as the maximal number of independent columns. This number, r, is
called the rank of A. When r = min(m,n) is as big as it could be, the matrix
A has full rank.
Inverses.

When a square matrix A (n×n) has full rank n, the linear transformation
α : V → V that it represents is invertible, and so has an inverse map α−1 :
V → V such that αα−1 = α−1α = i, the identity map, and α−1 is also a
linear transformation. The matrix representing α−1 is called A−1, the inverse
matrix of A:

AA−1 = A−1A = I,

the identity matrix of size n: I = (δij) (δij = 1 if i = j, 0 otherwise – the
Kronecker delta).
Transpose.

If A = (aij), the transpose is A′, or AT := (aji).
Note that, when all the matrices are defined,

(AB)−1 = B−1A−1
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(as this gives (AB)(AB)−1 = ABB−1A−1 = AA−1 = I, and similarly
(AB)−1(AB) = I, as required), and

(AB)T = BTAT

(as this has (i, j) element
∑

k(B
T )ik(A

T )kj =
∑

k bkiajk =
∑

k ajkbki = (AB)ji,
as required).
Determinants.

There are n! permutations σ of the set

Nn := {1, 2, . . . , n}

– bijections σ : Nn → Nn. Each permutation may be decomposed into a
product of transpositions (interchanges of two elements), and the parity of
the number of transpositions in any such decomposition is always the same.
Call σ odd or even according as this number is odd or even. Write

sgn σ := 1 if σ is even, −1 if σ is odd

for the sign or signum of σ. For A a square matrix of size n, the function

det A, or |A|, :=
∑
σ

(−1) sgn σa1,σ(1)a2,σ(2) . . . an,σ(n),

where the summation extends over all n! permutations, is called the deter-
minant of A, det A or |A|.
Properties.
1. |AT | = |A|.
Proof. If σ−1 is the inverse permutation to σ, σ and σ−1 have the same parity,
so the sums for their determinants have the same terms, but in a different
order.
2. If two rows (or columns) of A coincide, |A| = 0.
Proof. Interchanging two rows changes the sign of |A| (extra transposition,
which changes the parity), but leaves A and so |A| unaltered (as the two
rows coincide). So |A| = −|A|, giving |A| = 0.
3. |A| depends linearly on each row (or column) (det is a multilinear func-
tion, and this area is called Multilinear Algebra).
4. If A is n× n, |A| = 0 iff A has rank r < n.
5. Multiplication Theorem for Determinants. If A, B are n× n (so AB, and
BA, are defined),

|AB| = |A|.|B|.

3



6. Inverses again.
If A is n × n, the (i, j) minor is the determinant Aij of the (n − 1) ×

(n − 1) submatrix obtained by deleting the ith row and jth column. The
(i, j) cofactor, or signed minor, is (−)i+jAij (the signs follow a chessboard or
chequerboard pattern, with + in the top left-hand corner),

The matrix B = (bij), where

bij := (−)i+jAji/|A|,

ia the inverse matrix A−1 of A, defined iff |A| ≠ 0 (A is called singular if
|A| = 0, non-singular otherwise (thus a square matrix has a determinant iff
it is non-singular), and

AA−1 = A−1A = I

as before:

inverse = transposed matrix of cofactors over determinant.

Proof. With B as above, C := AB = (cij),

cij =
∑
k

aikbkj =
∑
k

aik.(−)k+jAjk/|A|.

If i = j, the RHS is 1 (expansion of |A| by its ith row). If not, the RHS
is 0 (expansion of the determinant of a matrix with two identical rows). So
cij = δij, so C = AB = I. Similarly, BA = I.
Solution of linear equations.

If A is n× n, the linear equations

Ax = b

possess a unique solution x iff A is non-singular (A−1 exists), and then

x = A−1b.

If A is singular (A has rank r < n), then either there is no solution (the equa-
tions are inconsistent), or there are infinitely many solutions (some equations
are redundant, and one can give some of the elements xi arbitrary values and
solve for the rest). What decides between these two cases is the rank of the
augmented matrix (A, b) obtained by adjoining the vector b as a final column.
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