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Orthogonal Matrices.
A square matrix A is orthogonal if

AT — A_l,

or equivalently, if
ATA = AAT = 1.

Then |ATA| = |AT||A] = |A]|A| = |I] = 1, |A|*> =1, |A| = £1 (we take the
+ sign).

If A= (ay,...,a,) (row of column vectors, so AT is the column of row-
vectors a! ) is orthogonal, ATA =1, i.e.

i

: (a1,...,a,) =1,
y
al aj = &;;: the columns of A are orthogonal to each other, and similarly the
rows are orthogonal to each other.
Note. If A, B are orthogonal, so is AB, since (AB)TAB = BTATAB =
BB =1.
Generalised inverses.

The theory above partially extends to non-square matrices, and matrices
not of full rank. For A m x n, call A~ a generalised inverse if

AATA=A.

We quote:
1. Generalised inverses always exist (but need not be unique),

2. If the linear equation
Ar=1b

is consistent (has at least one solution), then a particular solution is given
by
x=A"b.

FEigenvalues and eigenvectors.
If A is square, and

Az = Mz (x #0),



A is called an eigenvalue (latent value, characteristic value, e-value) of A,
x an eigenvector (latent vector, characteristic vector, e-vector) (determined
only to within a non-zero scalar factor ¢, as A(cx) = A(cz)). Then

(A=X)z =0
has non-zero solutions x, so infinitely many solutions cx, so A—A\I is singular:
|A—XI|=0.

If A is n x n, this is a polynomial equation of degree n in A\. By the Fun-
damental Theorem of Algebra (see e.g. M2PM3 L19-1.20), there are n roots
Aty .-+, Ay (possibly complex, counted according to multiplicity).

A matrix A is singular iff the linear equation Ax = 0 has some non-zero
solution x. This is the condition for 0 to be an eigenvalue:

a matriz is singular iff 0 is an eigenvalue.

Since the coefficient of A" in the polynomial p(\) := |A — M| is (=)", p()\)

factorises as
n

p(A) = [A = A =][](A = N).

1
Put A=0:

1
the determinant is the product of the eigenvalues.

Match the coefficients of (—A)"~!: in the RHS, we get a \; term for each i, so
the coefficient is >, A;, the sum of the eigenvalues. In the LHS, we get an ay;
term for each i, so the coefficient is 3" a;;, the sum of the diagonal elements
of A, which is called the trace of A. Comparing:

trA:Z/\i:

the trace is the sum of the eigenvalues.

Properties.
1. If A is symmetric, eigenvectors z;, x; corresponding to distinct eigenvalues
i, Aj are orthogonal.



Proof. Az; = \w;, so a7 AT = Nl or a7 A = Nal as A is symmetric.
So ] Ar; = Nxlx;. Interchanging ¢ and j and transposing (or arguing as
above), l Ax; = Njalx;. Subtract: (A, — \j)alz; = 0, giving 2l 2; = 0 as
N # A /]

2. If Ais real and symmetric, its eigenvalues are real. For Ax = Ax; tak-
ing complex conjugates gives AT = AT as A is real. Transposing, as A is
symmetric, this gives Z7 A = X\z7. So ' Az = M\z'x. Also Ar = Az, so
7' Az = \z"z. Subtract: 0 = (A — X\)z7z. But if  has jth element x; + iy;,
iy = Zj(x? + yjz-), which is non-zero as z is non-zero. So A\ = A, and A is
real. //

Note. The same proof shows that if A is anti-symmetric — AT = —A — the
eigenvalues are purely imaginary.

3. If A is real and orthogonal, its eigenvalues are of unit modulus: |\| = 1.
Proof. If Ax = \v, AT = AT as A is real, so 7' AT = 2T\, So zl AT Az =
ZT XAz, which as A is orthogonal is 77z = A\.zTx. Divide by 71z = 3, 27 >
0(asz#0): AA=[A\*=1.//

4. If C, A are similar (C' = B7'AB), A has eigenvalues A and eigenvectors
x — then C has eigenvalues A and eigenvectors B~z .

Proof. |A=XI| = 0,50 |C—\I| = |B"'AB-AB'IB| = |B!||A-\I||B| = 0.
So C has eigenvalues . C(B~'z) = (B™'AB)(B 'z) = B 'Ax = B '\z =
A(B7'z), so C has eigenvectors B~'z. //

Corollary. Similar matrices have the same determinant and trace.

Proof. These are the product and sum of the eigenvalues. //

5. If A is non-singular, the eigenvalues of A™! are the reciprocals A~ of the
eigenvalues \ of A, and the eigenvectors are the same.

Proof. Ar = Ax,sox = A"\, 80 A lx = X", /)

Theorem (Spectral Decomposition, or Jordan Decomposition). A
symmetric matrix A can be decomposed as

A=TAI" =" Ayl

where A = diag();) is the diagonal matrix of eigenvalues \; and I' = (71, ..., 7x)
is an orthogonal matrix whose columns +; are standardised eigenvectors

(v =1).

We refer for proof to any standard text on Linear Algebra, or on Mul-
tivariate Analysis in Statistics. As a corollary, one can show that for A



symmetric, its rank r(A) is the number of non-zero eigenvalues.
Square root of a matrix.
If A is symmetric, with decomposition as above, and we define A/? :=
diag()\zﬂ), then putting
A1/2 — FAI/QFT,

A1/2A1/2 — I\AI/QFTFAI/QFT
TAY2AY2TT (A is orthogonal)
= TAIT (A = diag(N\;))
= A

We call A'/? the square oot of A. If also A is non-singular (so no eigenvalue
is 0, so each \; ! is defined), write

ATV =TATT
A similar argument shows that
A71/2A71/2 — Afl

so we call A~Y2 the square root of A~!, and the inverse square root of A.
Positive definite matrices.

If A (n x n) is real and symmetric, A is positive definite (respectively
non-negative definite) if

2T Ar >0 (respectively > 0) for all non-zero z.

Here 2T Az = szzl 0T = Yoy a;w? + Yizj GijTiT; i a quadratic form
in the n variables x1,...,x, (one can replace 3, .; by 237,_;).
By the Spectral Decomposition Theorem,

tTAr = 2"TAT Tz =y Ay (y :=T'Tx)
Z Aiy? .

So A is non-negative definite (positive definite) iff 3>; \;y? > 0 for all y (> 0
for all non-zero y) iff all A; > 0 (> 0):

Proposition. A real symmetric matrix A is non-negative definite (positive
definite) iff all its eigenvalues are non-negative (positive).



