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Orthogonal Matrices.

A square matrix A is orthogonal if

AT = A−1,

or equivalently, if
ATA = AAT = I.

Then |ATA| = |AT ||A| = |A|.|A| = |I| = 1, |A|2 = 1, |A| = ±1 (we take the
+ sign).

If A = (a1, . . . , an) (row of column vectors, so AT is the column of row-
vectors aTi ) is orthogonal, A

TA = I, i.e.
aT1
...
aTn

 (a1, . . . , an) = I,

aTi aj = δij: the columns of A are orthogonal to each other, and similarly the
rows are orthogonal to each other.
Note. If A, B are orthogonal, so is AB, since (AB)TAB = BTATAB =
BTB = I.
Generalised inverses.

The theory above partially extends to non-square matrices, and matrices
not of full rank. For A m× n, call A− a generalised inverse if

AA−A = A.

We quote:
1. Generalised inverses always exist (but need not be unique),
2. If the linear equation

Ax = b

is consistent (has at least one solution), then a particular solution is given
by

x = A−b.

Eigenvalues and eigenvectors.
If A is square, and

Ax = λx (x ̸= 0),
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λ is called an eigenvalue (latent value, characteristic value, e-value) of A,
x an eigenvector (latent vector, characteristic vector, e-vector) (determined
only to within a non-zero scalar factor c, as A(cx) = λ(cx)). Then

(A− λI)x = 0

has non-zero solutions x, so infinitely many solutions cx, so A−λI is singular:

|A− λI| = 0.

If A is n × n, this is a polynomial equation of degree n in λ. By the Fun-
damental Theorem of Algebra (see e.g. M2PM3 L19-L20), there are n roots
λ1, . . . , λn (possibly complex, counted according to multiplicity).

A matrix A is singular iff the linear equation Ax = 0 has some non-zero
solution x. This is the condition for 0 to be an eigenvalue:

a matrix is singular iff 0 is an eigenvalue.

Since the coefficient of λn in the polynomial p(λ) := |A − λI| is (−)n, p(λ)
factorises as

p(λ) := |A− λI| =
n∏
1

(λ− λi).

Put λ = 0:

|A| =
n∏
1

λi :

the determinant is the product of the eigenvalues.

Match the coefficients of (−λ)n−1: in the RHS, we get a λi term for each i, so
the coefficient is

∑
i λi, the sum of the eigenvalues. In the LHS, we get an aii

term for each i, so the coefficient is
∑

aii, the sum of the diagonal elements
of A, which is called the trace of A. Comparing:

tr A =
∑
i

λi :

the trace is the sum of the eigenvalues.

Properties.
1. If A is symmetric, eigenvectors xi, xj corresponding to distinct eigenvalues
λi, λj are orthogonal.
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Proof. Axi = λixi, so xT
i A

T = λix
T
i , or xT

i A = λix
T
i as A is symmetric.

So xT
i Axj = λix

T
i xj. Interchanging i and j and transposing (or arguing as

above), xT
i Axj = λjx

T
i xj. Subtract: (λi − λj)x

T
i xj = 0, giving xT

i xj = 0 as
λi ̸= λj. //
2. If A is real and symmetric, its eigenvalues are real. For Ax = λx; tak-
ing complex conjugates gives Ax = λx as A is real. Transposing, as A is
symmetric, this gives xTA = λxT . So xTAx = λxTx. Also Ax = λx, so
xTAx = λxTx. Subtract: 0 = (λ− λ)xTx. But if x has jth element xj + iyj,

xTx =
∑

j(x
2
j + y2j ), which is non-zero as x is non-zero. So λ

T
= λ, and λ is

real. //
Note. The same proof shows that if A is anti-symmetric – AT = −A – the
eigenvalues are purely imaginary.
3. If A is real and orthogonal, its eigenvalues are of unit modulus: |λ| = 1.
Proof. If Ax = λx, Ax = λx as A is real, so xTAT = xTλ. So xTATAx =
xTλ.λx, which as A is orthogonal is xTx = λλ.xTx. Divide by xTx =

∑
i x

2
i >

0 (as x ̸= 0): λ.λ = |λ|2 = 1. //
4. If C, A are similar (C = B−1AB), A has eigenvalues λ and eigenvectors
x – then C has eigenvalues λ and eigenvectors B−1x .
Proof. |A−λI| = 0, so |C−λI| = |B−1AB−λB−1IB| = |B−1||A−λI||B| = 0.
So C has eigenvalues λ. C(B−1x) = (B−1AB)(B−1x) = B−1Ax = B−1λx =
λ(B−1x), so C has eigenvectors B−1x. //
Corollary. Similar matrices have the same determinant and trace.
Proof. These are the product and sum of the eigenvalues. //
5. If A is non-singular, the eigenvalues of A−1 are the reciprocals λ−1 of the
eigenvalues λ of A, and the eigenvectors are the same.
Proof. Ax = λx, so x = A−1λx, so A−1x = λ−1x. //

Theorem (Spectral Decomposition, or Jordan Decomposition). A
symmetric matrix A can be decomposed as

A = ΓΛΓT =
∑

λiγiγ
T
i ,

where Λ = diag(λi) is the diagonal matrix of eigenvalues λi and Γ = (γ1, . . . , γn)
is an orthogonal matrix whose columns γi are standardised eigenvectors
(γT

i γi = 1).

We refer for proof to any standard text on Linear Algebra, or on Mul-
tivariate Analysis in Statistics. As a corollary, one can show that for A
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symmetric, its rank r(A) is the number of non-zero eigenvalues.
Square root of a matrix.

If A is symmetric, with decomposition as above, and we define Λ1/2 :=
diag(λ

1/2
i ), then putting

A1/2 := ΓΛ1/2ΓT ,

A1/2A1/2 = ΓΛ1/2ΓTΓΛ1/2ΓT

= ΓΛ1/2Λ1/2ΓT (Λ is orthogonal)

= ΓΛΓT (Λ = diag(λi))

= A.

We call A1/2 the square root of A. If also A is non-singular (so no eigenvalue
is 0, so each λ−1

i is defined), write

A−1/2 := ΓΛ−1/2ΓT .

A similar argument shows that

A−1/2A−1/2 = A−1,

so we call A−1/2 the square root of A−1, and the inverse square root of A.
Positive definite matrices.

If A (n × n) is real and symmetric, A is positive definite (respectively
non-negative definite) if

xTAx > 0 (respectively ≥ 0) for all non-zero x.

Here xTAx =
∑n

i,j=1 xiaijxj =
∑n

i=1 aiix
2
i +

∑
i ̸=j aijxixj is a quadratic form

in the n variables x1, . . . , xn (one can replace
∑

i ̸=j by 2
∑

i<j).
By the Spectral Decomposition Theorem,

xTAx = xTΓΛΓTx = yTΛy (y := ΓTx)

=
∑

λiy
2
i .

So A is non-negative definite (positive definite) iff
∑

i λiy
2
i ≥ 0 for all y (> 0

for all non-zero y) iff all λi ≥ 0 (> 0):
Proposition. A real symmetric matrix A is non-negative definite (positive
definite) iff all its eigenvalues are non-negative (positive).
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