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Matrices of the form ATA are common in Statistics (e.g., in Regression).
1. ATA is always non-negative definite, since xTATAx = (Ax)T (Ax) =
yTy =

∑
y2i ≥ 0, with y := Ax. So all eigenvalues of ATA are non-negative.

2. ATA is positive definite iff all eigenvalues are positive iff ATA is non-
singular, and one can show this happens iff A has full rank.
3. If N(A) is the null space of A (the vector space of all x with Ax = 0),
N(A) = N(ATA).
4. ATA and A have the same rank.

2. SINGULAR VALUE DECOMPOSITION (SVD).
The following algebraic result is extremely important in Statistics, and

in Numerical Analysis. I do not have a reference in a standard Algebra or
Linear Algebra book; I have used [HJ] 3.0, 3.1, [GvL] 2.5.

Theorem (Singular Value Decomposition, SVD). If A (n×p) has rank
r, A can be written

A = ULV T ,

where U (n × r) and V (p × r) are column-orthogonal (UTU = V TV = Ir)
and L (r × r) is a diagonal matrix with positive elements, and

A =
r∑

i=1

λiuiv
T
i ,

where
(i) the λi are the square roots of the positive eigenvalues of A

TA (or AAT ) –
the singular values;
(ii) the vectors ui, vi are eigenvectors of AAT and ATA – the left and right
singular vectors.
(For A square and symmetric, this reduces to the Spectral Decomposition).

Proof. Since A has rank r, so by above does ATA. Apply Spectral De-
composition to ATA, obtaining the Λ = diag(λi), Γ as above. The λi are
non-negative (as ATA is non-negative definite). The λi = 0 terms make no
contribution to the sum

∑
λiγiγ

T
i , so we omit the zero eigenvalues and their

eigenvectors. Write the result as

ATA = V ΛV T ,
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where Λ = diag(λi) contains the positive eigenvalues and V (p × r) is a
column-orthogonal matrix of their eigenvectors. Write

ℓi := λ
1/2
i (i = 1, . . . , r), L := diag(ℓ1, . . . , ℓr).

Define U (n× r) by

ui := ℓ−1
i Avi (i = 1, . . . , r),

and write U = (u1, . . . , ur), V = (v1, . . . , vr) as rows of column-vectors. Then

uT
j ui = ℓ−1

i ℓ−1
j vTj A

TAvi = λiℓ
−1
i ℓ−1

j vTj vi,

as vi an eigenvector of ATA corr. to λi. The RHS is δij by orthogonality of

the ui, and ℓi = λ
1/2
i . So U is also column-orthogonal.

Since ATA (p × p) has rank r, and r orthogonal eigenvectors v1, . . . , vr,
which span its column-space C(ATA), any p-vector x can be written as

x =
r∑
1

αivi + y,

with y ∈ N(ATA), or y ∈ N(A) by above. Now N(ATA) is the eigenspace
of ATA for the eigenvalue 0, so y is orthogonal to the eigenvectors vi of A

TA
corresponding to the non-zero eigenvalues. Let ei be the column-vector of
length n with 1 in the ith place, 0 elsewhere. Then

ULV Tx = UL


vT1
...
vTr

 (
∑

αivi + y) = UL


∑

αiv
T
1 vi + vT1 y
...∑

σiv
T
r vi + vTr y



= UL


α1
...
αr

 =
∑

αiULei.

As

ULei = (u1, . . . , ur)


ℓ1

. . .

ℓr




0
...
1
...
0

 = (u1ℓ1, . . . , urℓr)



0
...
1
...
0

 = uiℓi = ℓiui,

2



this gives

ULV Tx =
∑

αiℓiui

=
∑

αiAvi (ℓiui = Avi)

=
∑

αiAvi + Ay (Ay = 0 as y ∈ N(A))

= A(
∑

αivi + y)

= Ax.

Since this holds for all x,

ULV T = A. //

Generalised Inverses and SVD.
Recall that the generalised inverse A− of A satisfies AA−A = A. If A has

SVD A = ULV T , one can check that

A− := V L−1UT

is a generalised inverse of A.

3. STATISTICAL SETTING.
Usually in Statistics we have univariate data x = (x1, . . . , xn), and have to

analyse it. Sometimes, however, each observation contains several different
readings (measurements, for example) on the same ‘individual’, or object.
We then need a two-suffix notation just to describe the data, and so we use
matrices throughout.
Notation. We assume that p variables are measured on each of n objects.
We assemble the np readings into a data matrix

X =


x11 . . . x1p
...

...
xn1 . . . xnp

 ,

where xij is the observation on the jth variable measured on the ith reading.
As always, n may be large – the larger the better, as large samples are

more informative than small ones. The size of p varies with the problem.
But typically p might be of the order of 10 or 12, say. A 12-dimensional
‘variable space’ is unwieldy for many purposes, and we might want a lower-
dimensional representation of the data, with as little loss of information as
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possible. Background: [MKB] Ch. 1, [K] Ch. 1.
Notation.

X = (x(1), . . . , x(p)) =


xT
1
...
xT
n

 .

So the column-vectors xi, x(j) relate to the ith object and the jth variable.
Mean vector. xi :=

1
n

∑n
r=1 xri is the sample mean of the ith variable; the

sample mean vector is

x :=


x1
...
xp

 .

The sample variance sij between the ith and jth variables is

sij :=
1

n

n∑
r=1

(xri − xi)(xrj − xj) =
1

n

n∑
r=1

xrixrj − xixj.

Form these into a matrix, the sample covariance matrix S := (sij):

S =
1

n

n∑
r=1

(xr − x)(xr − x)T =
1

n

n∑
r=1

xrx
T
r − x xT .

Now XT = (x1, . . . , xn) (row of columns corresponding to objects), so

XXT = (x1, . . . , xn)


xT
1
...
xn

 =
∑

xrx
T
r .

Write 1 for a column-vector of n 1s. Then (check) 11T is the n × n matrix
with each element 1, and (check) XT11TX = n2x xT . So

S =
1

n
XTX − 1

n2
XT11TX =

1

n
XTHX, where H := I − 1

n
11T

is the n × n centring matrix. We call M := XTX =
∑n

1 xrx
T
r the matrix of

sums of squares and products.
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