smfl13.tex

Lecture 13. 14.2.2011

Matrices of the form $A^T A$ are common in Statistics (e.g., in Regression). 1. $A^T A$ is always non-negative definite, since $x^T A^T A x = (Ax)^T (Ax) = y^T y = \sum y_i^2 \ge 0$, with y := Ax. So all eigenvalues of $A^T A$ are non-negative. 2. $A^T A$ is positive definite iff all eigenvalues are positive iff $A^T A$ is non-singular, and one can show this happens iff A has full rank. 3. If N(A) is the null space of A (the vector space of all x with Ax = 0), $N(A) = N(A^T A)$.

4. $A^T A$ and A have the same rank.

2. SINGULAR VALUE DECOMPOSITION (SVD).

The following algebraic result is extremely important in Statistics, and in Numerical Analysis. I do not have a reference in a standard Algebra or Linear Algebra book; I have used [HJ] 3.0, 3.1, [GvL] 2.5.

Theorem (Singular Value Decomposition, SVD). If $A (n \times p)$ has rank r, A can be written

$$A = ULV^T,$$

where $U(n \times r)$ and $V(p \times r)$ are column-orthogonal $(U^T U = V^T V = I_r)$ and $L(r \times r)$ is a diagonal matrix with positive elements, and

$$A = \sum_{i=1}^{r} \lambda_i u_i v_i^T,$$

where

(i) the λ_i are the square roots of the positive eigenvalues of $A^T A$ (or $A A^T$) – the singular values;

(ii) the vectors u_i , v_i are eigenvectors of AA^T and A^TA – the left and right singular vectors.

(For A square and symmetric, this reduces to the Spectral Decomposition).

Proof. Since A has rank r, so by above does $A^T A$. Apply Spectral Decomposition to $A^T A$, obtaining the $\Lambda = diag(\lambda_i)$, Γ as above. The λ_i are non-negative (as $A^T A$ is non-negative definite). The $\lambda_i = 0$ terms make no contribution to the sum $\sum \lambda_i \gamma_i \gamma_i^T$, so we omit the zero eigenvalues and their eigenvectors. Write the result as

$$A^T A = V \Lambda V^T,$$

where $\Lambda = diag(\lambda_i)$ contains the positive eigenvalues and $V(p \times r)$ is a column-orthogonal matrix of their eigenvectors. Write

$$\ell_i := \lambda_i^{1/2} \quad (i = 1, \dots, r), \quad L := diag(\ell_1, \dots, \ell_r).$$

Define $U(n \times r)$ by

$$u_i := \ell_i^{-1} A v_i \qquad (i = 1, \dots, r)$$

and write $U = (u_1, \ldots, u_r), V = (v_1, \ldots, v_r)$ as rows of column-vectors. Then

$$u_{j}^{T}u_{i} = \ell_{i}^{-1}\ell_{j}^{-1}v_{j}^{T}A^{T}Av_{i} = \lambda_{i}\ell_{i}^{-1}\ell_{j}^{-1}v_{j}^{T}v_{i},$$

as v_i an eigenvector of $A^T A$ corr. to λ_i . The RHS is δ_{ij} by orthogonality of

the u_i , and $\ell_i = \lambda_i^{1/2}$. So U is also column-orthogonal. Since $A^T A$ $(p \times p)$ has rank r, and r orthogonal eigenvectors v_1, \ldots, v_r , which span its column-space $C(A^T A)$, any p-vector x can be written as

$$x = \sum_{1}^{r} \alpha_i v_i + y,$$

with $y \in N(A^T A)$, or $y \in N(A)$ by above. Now $N(A^T A)$ is the eigenspace of $A^T A$ for the eigenvalue 0, so y is orthogonal to the eigenvectors v_i of $A^T A$ corresponding to the non-zero eigenvalues. Let e_i be the column-vector of length n with 1 in the *i*th place, 0 elsewhere. Then

$$ULV^{T}x = UL \begin{pmatrix} v_{1}^{T} \\ \vdots \\ v_{r}^{T} \end{pmatrix} (\sum \alpha_{i}v_{i} + y) = UL \begin{pmatrix} \sum \alpha_{i}v_{1}^{T}v_{i} + v_{1}^{T}y \\ \vdots \\ \sum \sigma_{i}v_{r}^{T}v_{i} + v_{r}^{T}y \end{pmatrix}$$
$$= UL \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{r} \end{pmatrix} = \sum \alpha_{i}ULe_{i}.$$

As

$$ULe_{i} = (u_{1}, \dots, u_{r}) \begin{pmatrix} \ell_{1} & & \\ & \ddots & \\ & & \ell_{r} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = (u_{1}\ell_{1}, \dots, u_{r}\ell_{r}) \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = u_{i}\ell_{i} = \ell_{i}u_{i}$$

this gives

$$ULV^{T}x = \sum \alpha_{i}\ell_{i}u_{i}$$

= $\sum \alpha_{i}Av_{i}$ $(\ell_{i}u_{i} = Av_{i})$
= $\sum \alpha_{i}Av_{i} + Ay$ $(Ay = 0 \text{ as } y \in N(A))$
= $A(\sum \alpha_{i}v_{i} + y)$
= $Ax.$

Since this holds for all x,

$$ULV^T = A.$$
 //

Generalised Inverses and SVD.

Recall that the generalised inverse A^- of A satisfies $AA^-A = A$. If A has SVD $A = ULV^T$, one can check that

$$A^- := V L^{-1} U^T$$

is a generalised inverse of A.

3. STATISTICAL SETTING.

Usually in Statistics we have univariate data $x = (x_1, \ldots, x_n)$, and have to analyse it. Sometimes, however, each observation contains several different readings (measurements, for example) on the same 'individual', or object. We then need a two-suffix notation just to describe the data, and so we use matrices throughout.

Notation. We assume that p variables are measured on each of n objects. We assemble the np readings into a *data matrix*

$$X = \begin{pmatrix} x_{11} & \dots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \dots & x_{np} \end{pmatrix},$$

where x_{ij} is the observation on the *j*th variable measured on the *i*th reading.

As always, n may be large – the larger the better, as large samples are more informative than small ones. The size of p varies with the problem. But typically p might be of the order of 10 or 12, say. A 12-dimensional 'variable space' is unwieldy for many purposes, and we might want a lowerdimensional representation of the data, with as little loss of information as possible. Background: [MKB] Ch. 1, [K] Ch. 1. Notation.

$$X = (x_{(1)}, \dots, x_{(p)}) = \begin{pmatrix} x_1^T \\ \vdots \\ x_n^T \end{pmatrix}.$$

So the column-vectors x_i , $x_{(j)}$ relate to the *i*th object and the *j*th variable. Mean vector. $\overline{x}_i := \frac{1}{n} \sum_{r=1}^n x_r i$ is the sample mean of the *i*th variable; the sample mean vector is

$$\overline{x} := \left(\begin{array}{c} \overline{x}_1 \\ \vdots \\ \overline{x}_p \end{array}\right).$$

The sample variance s_{ij} between the *i*th and *j*th variables is

$$s_{ij} := \frac{1}{n} \sum_{r=1}^{n} (x_{ri} - \overline{x}_i)(x_{rj} - \overline{x}_j) = \frac{1}{n} \sum_{r=1}^{n} x_{ri} x_{rj} - \overline{x}_i \overline{x}_j.$$

Form these into a matrix, the sample covariance matrix $S := (s_{ij})$:

$$S = \frac{1}{n} \sum_{r=1}^{n} (x_r - \overline{x}) (x_r - \overline{x})^T = \frac{1}{n} \sum_{r=1}^{n} x_r x_r^T - \overline{x} \ \overline{x}^T.$$

Now $X^T = (x_1, \ldots, x_n)$ (row of columns corresponding to *objects*), so

$$XX^T = (x_1, \dots, x_n) \begin{pmatrix} x_1^T \\ \vdots \\ x_n \end{pmatrix} = \sum x_r x_r^T.$$

Write **1** for a column-vector of *n* 1s. Then (check) $\mathbf{11}^T$ is the $n \times n$ matrix with each element 1, and (check) $X^T \mathbf{11}^T X = n^2 \overline{x} \ \overline{x}^T$. So

$$S = \frac{1}{n}X^T X - \frac{1}{n^2}X^T \mathbf{1}\mathbf{1}^T X = \frac{1}{n}X^T H X, \text{ where } H := I - \frac{1}{n}\mathbf{1}\mathbf{1}^T$$

is the $n \times n$ centring matrix. We call $M := X^T X = \sum_{1}^{n} x_r x_r^T$ the matrix of sums of squares and products.