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Matrices of the form AT A are common in Statistics (e.g., in Regression).
1. ATA is always non-negative definite, since 27 AT Ar = (Az)T(Ax) =
yTy = 9? >0, with y := Azx. So all eigenvalues of AT A are non-negative.
2. AT A is positive definite iff all eigenvalues are positive iff AT A is non-
singular, and one can show this happens iff A has full rank.
3. If N(A) is the null space of A (the vector space of all x with Az = 0),
N(A) = N(ATA).
4. AT A and A have the same rank.

2. SINGULAR VALUE DECOMPOSITION (SVD).

The following algebraic result is extremely important in Statistics, and
in Numerical Analysis. I do not have a reference in a standard Algebra or
Linear Algebra book; I have used [HJ] 3.0, 3.1, [GVL] 2.5.

Theorem (Singular Value Decomposition, SVD). If A (n x p) has rank
r, A can be written
A=ULVT,

where U (n x r) and V (p x r) are column-orthogonal (UTU = VTV = I,)
and L (r x r) is a diagonal matrix with positive elements, and

r
z : T

A = )\ZUZUz s
i=1

where

(i) the \; are the square roots of the positive eigenvalues of ATA (or AAT) —
the singular values;

(ii) the vectors u;, v; are eigenvectors of AAT and AT A — the left and right
singular vectors.

(For A square and symmetric, this reduces to the Spectral Decomposition).

Proof. Since A has rank r, so by above does ATA. Apply Spectral De-
composition to AT A, obtaining the A = diag(\;), T' as above. The ); are
non-negative (as AT A is non-negative definite). The \; = 0 terms make no
contribution to the sum 3= \;y;77, so we omit the zero eigenvalues and their
eigenvectors. Write the result as

ATA=VAVT,
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where A = diag(\;) contains the positive eigenvalues and V (p x r) is a
column-orthogonal matrix of their eigenvectors. Write

U= )\11/2 (t=1,...,r), L:=diag(ly,...,0,).
Define U (n x r) by
u; =0 Ay, (t=1,...,7),
and write U = (uq,...,u,), V = (v1,...,v,) as rows of column-vectors. Then
ugﬂuZ = fi_lﬁj_lvaATAvi = /\iﬁi_lﬁj_lvai,

as v; an eigenvector of ATA corr. to A\;. The RHS is §;; by orthogonality of
the u;, and ¢; = )\Z1 /2. 8o U is also column-orthogonal.

Since ATA (p x p) has rank 7, and r orthogonal eigenvectors vy, ..., v,,
which span its column-space C(AT A), any p-vector x can be written as

T = v +y,
1

with y € N(ATA), or y € N(A) by above. Now N(ATA) is the eigenspace
of AT A for the eigenvalue 0, so y is orthogonal to the eigenvectors v; of AT A
corresponding to the non-zero eigenvalues. Let e; be the column-vector of
length n with 1 in the ith place, 0 elsewhere. Then

vl S aviv +oly
ULV'z =UL| : | awi+y)=UL :
vl S owlv +oly
aq
=UL : = Z o;U Le;.
o,
As
0 0
b : f
ULe; = (uy, ..., u.) 1| = (wly,...,ul) | 1 | =wily = iy,
C, : :
0 0



this gives

ULVTQT = Z C\Q&U,l
= Z CYiAUZ' (&UZ = sz)
= ZaiAvi—i-Ay (Ay=0asy € N(A))

= A(Zaﬂ}ri—y)
= Az.

Since this holds for all x,
ULVT = A. //

Generalised Inverses and SVD.
Recall that the generalised inverse A~ of A satisfies AA~A = A. If A has
SVD A =ULVT, one can check that

A" =VL U
is a generalised inverse of A.

3. STATISTICAL SETTING.

Usually in Statistics we have univariate data x = (xy, ..., x,), and have to
analyse it. Sometimes, however, each observation contains several different
readings (measurements, for example) on the same ‘individual’, or object.
We then need a two-suffix notation just to describe the data, and so we use
matrices throughout.

Notation. We assume that p variables are measured on each of n objects.
We assemble the np readings into a data matrix

i1 ... Ti1p
X = f S
Tn1 -« Tpp

where z;; is the observation on the jth variable measured on the ith reading.

As always, n may be large — the larger the better, as large samples are
more informative than small ones. The size of p varies with the problem.
But typically p might be of the order of 10 or 12, say. A 12-dimensional
‘variable space’ is unwieldy for many purposes, and we might want a lower-
dimensional representation of the data, with as little loss of information as
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possible. Background: [MKB] Ch. 1, [K] Ch. 1.

Notation.
T

g
X:(x(l),...,x(p)): :
),

So the column-vectors x;, ;) relate to the ith object and the jth variable.
Mean vector. @; := % "_,x.1 is the sample mean of the ith variable; the
sample mean vector is

T

Tp

The sample variance s;; between the 7th and jth variables is
1 & 1

sij 1= = > (ri —Ti) (205 — Tj) = =

n
Z .Qfm'l’rj — Tifj.
n r=1 r=1

ni

Form these into a matrix, the sample covariance matriz S = (s;;):

1& 1&
S==->(z,—2)(z, —T)" == zal —TT".
n.3 n.3
Now XT = (z1,...,,) (row of columns corresponding to objects), so
&
XX = (1, yma) | 0 | =D wal
Ty,

Write 1 for a column-vector of n 1s. Then (check) 117 is the n x n matrix
with each element 1, and (check) X7117X = n’*z z7. So

1 1 1 1
S=—-X"X-S5X"11"X = —X"HX, where H:=1--11"
n n n n

is the n x n centring matriv. We call M := XTX = Y7 z,.2T the matriz of
sums of squares and products.



