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Since sii is the sample variance of the ith variable, si :=
√
sii is its sample

SD. Form the sample correlation matrix R := (rij), where

rij := sij/sisj

is the sample correlation coefficient between the ith and jth variables (so
|rij| ≤ 1). If

D := diag(si) = diag(
√
sii),

R = D−1SD−1, S = DRD.

One can check:
(i) H is symmetric and idempotent (i.e. H2 = H);
(ii) S is symmetric and non-negative definite;
(iii) R is symmetric and non-negative definite.
Scaling.

If our data is subjected to an affine transformation (change of location
and scale) x 7→ y := Ax + b, then (check) y = Ax + b, and Sy = ASxA

T . In
particular, if

yr := D−1(xr − x) (∗)

then Y has mean vector 0 and covariance matrixD−1S(D−1)T = D−1SD−1 =
R, the correlation matrix of X. So the affine transformation (∗) scales the
data X to new data Y , with zero means and unit variances (1s on the di-
agonal of Sy – and correlations = covariances rij of modulus ≤ 1 off the
diagonal). This eliminates dependence of the data on arbitrary choices of
location and scale in the units, and makes the data dimensionless.
Mahalanobis transformation.

Recall that S is non-negative definite, and is positive definite in the typ-
ical, or generic, case. Then S−1 exists, and hence so do S±1/2. If

zr := S−1/2(xr − x) (r = 1, . . . , n), (∗∗)

then Z has mean vector 0 and covariance matrix S−1/2SS−1/2 = I. The map
X 7→ Z is the Mahalonobis transformation, which not only centres (means
to 0) and scales (variances to 1) as above, but also makes the variables un-
correlated.
Principal component transformation.
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By the Spectral Decomposition Theorem, we can write S = GLGT , where
G is an orthogonal matrix and L is a diagonal matrix of eigenvalues of S.
Since S is non-negative definite, its eigenvalues ℓi are non-negative, and
w.l.o.g. we can re-order the variables so that they decrease in size:

ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓp ≥ 0.

The principal component transformaton

yr := GT (xr − x) (r = 1, . . . , n) (∗ ∗ ∗)

takes data X to new data Y , with zero mean and covariance matrix Sy =
GTSxG = GTGLGTG = L, as G is orthogonal: Sy = L is diagonal. So the yr
are uncorrelated linear combinations of the data, called principal components.
R-techniques and Q-techniques.

Multivariate Analysis splits into two broad aareas. In the first, we are
interested in the p variables, that is, in the p columns of our data matrix.
Methods used here are called R-techniques, because they depend on the cor-
relation matrix R. In the second, we are interested in the n objects, that is,
in the n rows of our data matrix. Methods used here are called Q-techniques,
because they deal directly with the source data (Quelle = source, German).
R-techniques include:

principal components analysis (PCA) [MKB Ch. 8, K 2.3];
factor analysis [MKB Ch. 9, K 16.2];
canonical correlation analysis [MKB Ch. 10, K 14.5].

Q-techniques include:
discriminant analysis [MKB Ch. 11, K 12.3];
cluster analysis [MKB Ch. 13, K 3.1, 9.4];
multidimensional scaling [MKB Ch. 14, K 3.2, 3.3, 9.3].

4. SAMPLE AND POPULATION
To describe the population in the p-dimensional case, we need a population

mean (vector) and a population covariance (matrix):

µ := Ex; Σ := var x = E[(x− µ)(x− µ)T ].

Then (check)

E[x] = µ, var(x) =
1

n
Σ, E[S] =

n− 1

n
.Σ.
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The unbiased sample covariance matrix is

Su :=
n

n− 1
S;

then E[Su] = Σ, so Su is unbiased as an estimator for Σ (as in the one-
dimensional case).
Objectives.

These may vary widely.
R-techniques. Here we are interested in the p variables (columns of X). If
p = 2 we can use plots in two dimensions (paper, whiteboard, computer
screen); if p = 3, we can use our 3-dimensional geometric intuitiion, and
then use computer graphics (based on projective geometry) to represent 3-
dimensional reality in 2 dimensions. But if p is 10 or 12, say, it is hard to visu-
alise the data in 10 or 12 dimensions, and so we seek some lower-dimensional
representation of the data. This will entail some loss of information, which
we seek to minimise. We also seek a parsimonious summarisation of the
data (Principle of Parsimony; Occam’s Razor; Einstein’s Dictum). One use-
ful technique here is PCA (below). Another is projection pursuit.
Q-techniques. Here we are interested in the objects. We might want to
(i) represent them as points in space, with closeness corresponding to simi-
larity (multidimensional scaling);
(ii) subdivide or classify into types (cluster analysis);
(iii) assign objects to types (with two types, this is called discriminant anal-
ysis).
Exploratory Data Analysis (EDA).

As in one dimension, one should begin by ‘getting to know the data’ by
examining it visually. One should check for unusual readings (which may
be errors – or may be valid and highly informative!), or outliers, and decide
what to do about any missing readings (e.g. fill in from existing readings –
‘imputation’).

5. PRINCIPAL COMPONENTS ANALYSIS (PCA)
PCA is due to Harold Hotelling (1895-1978) in 1933, following Karl Pear-

son (1857-1936) in 1901.
We met PCA above in its sample form (see (∗ ∗ ∗)); we now turn to the

population counterpart of this. We take a random p-vector x, with mean µ
and covariance matrix Σ (no distributional assumptions yet). By spectral
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decomposition of Σ,

Σ = ΓΛΓT , Λ = ΓTΣΓ (Σ =
p∑
1

λiγiγ
T
i ),

with Λ = diag(λi), λ1 ≥ . . . ≥ λp ≥ 0 the eigenvalues of Σ, w.l.o.g. in
decreasing order, Γ = (γ1, . . . , γp) the orthogonal matrix of eigenvectors.
Write

y := ΓT (x− µ) : yi = γT
i (x− µ),

is called the ith principal component of x. Then (check)

Ey = 0, var y = Λ,

a diagonal matrix, so the yi are uncorrelated. Also the var yi = λi are in
decreasing order; their sum and product are the trace and determinant of Σ.
Definition. A linear combination aTx =

∑p
1 aixi of x is a standardised linear

combination (SLC) if
∑p

1 a
2
i = 1 (i.e. aTa = 1).

Theorem. The first principal component

y1 = γt
1(x− µ)

is the SLC of x with the largest variance, λ1.

Proof. Since γT
i γi = 1 (the eigenvectors are normalised to have length 1), y1

is a SLC, and has variance λ1 by above. If α := aTx is any other SLC, write

a = c1γ1 + . . .+ cpγp

(any p-vector can be written like this, as the columns γi are linearly inde-
pendent, so form a basis). Then

var α = var(aTx) = aTΣx = (
∑
i

ciγi)(
∑
j

λjγjγ
T
j )(

∑
k

ckγk)

=
∑
ijk

ciλjckγ
T
i γjγ

T
j γk =

∑
ijk

ciλjckδijδjk =
p∑
1

λic
2
i .

But
∑

c2i = 1 and λ1 ≥ . . . ≥ λp ≥ 0, so var α =
∑

λic
2
i is maximised for

c1 = 1, ci = 0 for i = 2, . . . , p, when a = γ1, and its maximum value is λ1. //
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