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Note. This choice of aTx = γT
1 x differs from the first principal component

y1 = γT
1 (x− µ) only by a constant γT

1 µ, so has the same variance.

Theorem. For each k = 0, 1, . . . , p − 1, if λk > 0 the (k + 1)th principal
component

yk+1 = γT
k+1(x− µ)

is the SLC of x with largest variance uncorrelated with the first k principal
components, and this variance is λk+1.

Proof. If the SLC is aTx as above, then in the notation above

cov(aTx, yk) = cov(aTx, γT
k (x− µ))

= E[(aTx− E(aTx)).γT
k (x− µ)]

= E[aT (x− µ)(x− µ)Tγk] (γT
k (x− µ) a scalar, so its own transpose)

= aTΣa (E[(x− µ)(x− µ)T ] = Σ)

=
p∑
1

ciγiΣγk

=
p∑
1

ci(Γ
TΣΓ)ik,

which is
∑

ciλik by spectral decomposition, or
∑

ciλiδik as Λ is diagonal,
which is ckλk. This is 0 if aTx is uncorrelated with yk, but by assumption,
λk > 0 (and so λ1 ≥ . . . ≥ λk > 0). So ck = 0. Similarly, c1 = . . . = ck−1 = 0.
So a =

∑p
k+1 ciγi. As before, var(a

Tx) =
∑p

k+1 λic
2
i ; as the λi are decreasing

this is maximised for ck+1 = 1 and the rest 0, with maximum λk+1. //

Interpretation. We think of

p∑
1

var yi =
p∑
1

λi = trace(Λ) = trace(Σ)

as the ‘total variability’ in the distribution, and var y1 = λ1 the ‘contri-
bution’ of the 1st principal component y1 to ‘explaining’ this variability,
var y2 = λ2 the contribution of y2, etc. So λi/(λ1 + . . . + λp) is the propor-
tion of the total variability explained by the ith principal component, and
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(λ1+ . . .+λi)/(λ1+ . . .+λp) is the proportion of the variability explained by
the first k principal components. As a corollary: if Σ has rank k < p, all the
variability is explained by the first k principal components (the remaining
eigenvalues are 0).
How many components to retain?

If we retain k components, there is a trade-off between k large (to explain
more variability) and k small (to give a parsimonious representation). We
should choose k bearing in mind the purpose of our study.

To assist in choice of k, a diagram is often drawn. Plot the points (k, λk),
or equivalently (k, λk/(

∑
λi)), and join adjacent points by straight-line seg-

ments.As the λi decrease, the resulting ‘broken line’ (continuous piecewise-
linear function) decreases. We hope to see it decrease steeply at first, then
more slowly, then level off. By analogy with mountain-sides, which typically
have three parts –
(i) the steepest, rocky or cliff, part at the top, then
(ii) a less steep, scree slope in the middle, then
(iii) a gently sloping grassy part below –
such a diagram is called a scree diagram (R. B. Cattell (1905-1998) in 1966).
Generally we will retain components until somewhere on the scree slope –
where depending on how we value parsimony v. accuracy. We may look for
an ‘elbow’, where the gradient flattens out.

Sample principal components
Return to our data matrix X. Let a be a unit p-vector. Then

Xa =


xT
i a
...

xT
na


gives n observations of a new variable xTa. The sample variance is aTSa,
where S is the sample variance matrix of X; we look for SLCs with maximum
variance. Let

S = GLGT

be the spectral decomposition of S, L = diag(li), where l1 ≥ . . . ≥ lp ≥ 0 are
the eigenvalues of S, G = (g1, . . . , gp) the orthogonal matrix of corresponding
eigenvectors. As before,

yr := GT (xr − x) (r = 1, . . . , n)
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takes the data matrix X to Y , with mean 0 and covariance matrix L, which
is diagonal, so the yr are uncorrelated. Now (check)

Y = (X − 1xT )G = (X − 1xT )(g1, . . . , gp),

so as Y = (y(1), . . . , y(p)),

y(k) = (X − 1xT )gk

gives the SLC of maximal variance, lk, uncorrelated with y(1), . . . , y(k−1).
Taking the rth row,

yrk = (xT
r − xT )gk = gTk (xr − x).

If the subscript r is unimportant, we can drop it: yi = gTi (x− x).
Example: Examination scores ([MKB], 1.2.3, Table 1.2.1). This gives data
on 88 students’ scores on each of 5 Mathematics exams (Mechanics, Vectors,
Algebra, Analysis, Statistics); the first two are closed book (C), the last three
open book (O). So here n = 88, p = 5. The eigenvalues of S are

l1 = 679.2, l2 = 199.8, l3 = 102.6, l4 = 83.7, l5 = 31.8.

The five principal components are found.
1. y1 gives positive (and comparable) weighting to all 5 marks. This is thus
a weighted average of the marks, and reflects overall ability (or studiousness
– it is difficult to tell these apart from exam performances alone!).
2. y2 gives positive weight to C and negative weight to O. This is thus a con-
trast between open-book and closed-book exams. (Students differ greatly,
just as people generally do; most students have a definite preference for one
or the other; this is often gender-linked).
3. y3 gives positive weight to Vectors, Algebra and Aalysis, and negative
weight to Mechanics and Statistics. This is thus a pure-applied contrast
(though this would also depend on who taught what!). Again, most students
have a definite preference for one or the other.
The last two are less important because of the smaller size of l4, l5, and have
no clear interpretation. We would retain 3 principal components here.
Covariances v. correlations.

One of the main problems with PCA is that it is scale-dependent: the
outcome depends on the numbers, and these depend on the units used to
measure them. The choice of units is often arbitrary, and then PCA does
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not have any intrinsic meaning. Also PCA looks for SLCs of maximum vari-
ability, and the variability can be increased arbitrarily by blowing up the
scale in which some variable is measured. So we need to look at and choose
the scale of each variable, and this depends on context.

If we use the covariance matrix S, we allow different variables to have
differing importance. If we standardise each variance to 1, we pass from S to
the correlation matrix R. This is independent of scale and intrinsically mean-
ingful, but we have now forced all p variables to have the same importance,
which may or may not be sensible, again depending on context. Moral: think
carefully whether to use S or R before doing PCA. For a thorough discussion,
see e.g. [K] Section 2.2.5, esp. p.65-66.
Other topics.
1. Analysis of variance (ANOVA). This is closely related to regression. It
tests the hypothesis that the means of p different samples are the same by
analysing variances (= variability): if the means differ, variability between
groups compared to within groups is higher than when the means are the
same. For a full treatment, see e.g. [BF], Ch. 2.
2. Chi-square distributions. The chi-square distribution with n degrees of
freedom (df), χ2(n), is defined as the law of the sum of squares of n inde-
pendent standard normals. The distribution theory in this area reduces to
the distributions of quadratic forms in normal variates. As the relevant ma-
trices are projections (satisfy P 2 = P ), this can be reduced to linear forms
in normal variates; see e.g. [BF], Ch. 3.
3. Sum-of-squares decompositions. Using sums of orthogonal projections
from Linear Algebra, one can reduce the relevant distribution theory to de-
composing sums of squares into independent sums of squares; all χ2 dis-
tributed. Quotients of these have Fisher F -distributions. Hypotheses may
be tested by suitable F -tests; for details, see e.g. [BF], Ch. 4, 6.
4. Analysis of covariance (ANCOVA).
This is a hybrid of regression and ANOVA, involving both qualitative and
quantitative covariates. For details, see e.g. [BF], Ch. 5.
5. Wishart distributions. These are matrix analogues of chi-square distribu-
tions. They are important in multivariate hypothesis testing and multivariate
ANOVA (MANOVA); see e.g. [MKB] 3.4, [K] 7.3. NHB
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