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Proof. Go back to completing the square (or, return to (*) with
∫
and dy

deleted):
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The first factor is f1(x), by Fact 2. So, fY |X(y|x) = f(x, y)/f1(x) is the
second factor:

fY |X(y|x) =
1√

2πσ2

√
1− ρ2

exp{−1

2
(y − cx)

2/(σ2
2(1− ρ2))},

where cx is the linear function of x given below (*). This not only completes
the proof of Fact 4, but gives
Fact 5. The conditional mean E(Y |X = x) is linear in x:

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1).

Note. This simplifies when X and Y are equally variable, σ1 = σ2:

E(Y |X = x) = µ2 + ρ(x− µ1)

(recall EX = µ1, EY = µ2). Recall that in Galton’s height example, this
says: for every inch of mid-parental height above/below the average, x− µ1,
the parents pass on to their child, on average, ρ inches, and continuing in
this way: on average, after n generations, each inch above/below average
becomes on average ρn inches, and ρn → ∞ as n → ∞, giving regression
towards the mean.
(A regression function is a conditional mean – see Section 5.)
Fact 6. The conditional variance of Y given X = x is

var(Y |X = x) = σ2
2(1− ρ2).

Recall (Fact 3) that the variability (= variance) of Y is varY = σ2
2. By Fact

5, the variability remaining in Y when X is given (i.e., not accounted for by
knowledge of X) is σ2

2(1 − ρ2). Subtracting: the variability of Y which is
accounted for by knowledge of X is σ2

2ρ
2. That is: ρ2 is the proportion of the
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variability of Y accounted for by knowledge of X. So ρ is a measure of the
strength of association between Y and X.

Recall that the covariance is defined by

cov(X,Y ) := E[(X−EX)(Y−EY )] = E[(X−µ1)(Y−µ2)] = E(XY )−(EX)(EY ),

and the correlation coefficient ρ, or ρ(X,Y ), defined by

ρ = ρ(X,Y ) := cov(X,Y )/(
√
varX

√
varY ) = E[(X − µ1)(Y − µ2)]/σ1σ2

is the usual measure of the strength of association between X and Y (−1 ≤
ρ ≤ 1; ρ = ±1 iff one of X,Y is a function of the other).
Fact 7. The correlation coefficient of X, Y is ρ.
Proof.

ρ(X, Y ) := E
[(X − µ1

σ1

)(Y − µ2

σ2

)]
=

∫ ∫ (x− µ1

σ1

)(y − µ2

σ2

)
f(x, y)dxdy.

Substitute for f(x, y) = c exp(−1
2
Q), and make the change of variables u :=

(x− µ1)/σ1, v := (y − µ2)/σ2:

ρ(X, Y ) =
1

2π
√
1− ρ2

∫ ∫
uv exp{−1

2
[u2 − 2ρuv + v2]/(1− ρ2)}dudv.

Completing the square, [u2 − 2ρuv + v2] = (v − ρu)2 + (1− ρ2)u2. So

ρ(X, Y ) =
1√
2π

∫
u exp(−1

2
u2)du.

1√
2π

√
1− ρ2

∫
v exp{−1

2
(v−ρu)2/(1−ρ2)}dv.

Replace v in the inner integral by (v−ρu)+ρu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the
second is ρu (‘normal density’). So

ρ(X, Y ) =
1√
2π

.ρ
∫

u2 exp(−1

2
u2)du = ρ

(‘normal variance’), as required.
This completes the identification of all five parameters in the bivariate

normal distribution: two means µi, two variances σ2
i , one correlation ρ.

Note 1. The above holds for −1 < ρ < 1; always, −1 ≤ ρ ≤ 1. In the limiting
cases ρ = ±1, one of X, Y is a linear function of the other: Y = aX + b, say,
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as with temperature (Fahrenheit and Centigrade). The situation is not really
two-dimensional: we can (and should) use only one of X and Y , reducing to
a one-dimensional problem.
Note 2. The slope of the regression line y = cx is ρσ2/σ1 = (ρσ1σ2)/(σ

2
1),

which can be written as cov(X,Y )/varX = σ12/σ11, or σ12/σ
2
1: the line is

y − EY =
σ12

σ11

(x− EX).

This is the population version (what else?!) of the sample regression line

y − Ȳ =
SXY

SXX

(x− X̄),

from linear regression (Section 1).
The case ρ = ±1 – apparently two-dimensional, but really one-dimensional

– is singular; the case −1 < ρ < 1 - genuinely two-dimensional - is non-
singular, or (see below) full rank.

We note in passing
Fact 8. The bivariate normal law has elliptical contours. For, the contours
are Q(x, y) = const, which are ellipses (as Galton found).
Moment Generating Function (MGF). RecallM(t) := E(etX). ForX N(µ, σ2),
MX(t) = exp(µt + 1

2
σ2t2) [SP, Problems 5]. So MX−µ(t) = exp(1

2
σ2t2),

and the CF is ϕX−µ(t) = exp(−1
2
σ2t2). Then (check) µ = EX = M ′

X(0),
varX = E[(X − µ)2] = M ′′

X−µ(0).
Similarly in the bivariate case: the MGF is

MX,Y (t1, t2) := E exp(t1X + t2Y ).

For the bivariate normal,

M(t1, t2) = E(exp(t1X + t2Y )) =
∫ ∫

exp(t1x+ t2y)f(x, y)dxdy

=
∫

exp(t1x)f1(x)dx
∫

exp(t2y)f(y|x)dy.

The inner integral is the MGF of Y |X = x, which is N(cx, σ
2
2, (1− ρ2)), so is

exp(cxt2 +
1
2
σ2
2(1− ρ2)t22). By Fact 4, cxt2 = [µ2 + ρσ2

σ1
(x− µ1)]t2, so

M(t1, t2) = exp(t2µ2 − t2
σ2

σ1

µ1 +
1

2
σ2
2(1− ρ2)t22)

∫
exp([t1 + t2ρ

σ2

σ1

]x)f1(x)dx.
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Since f1(x) is N(µ1, σ
2
1), the inner integral is a normal MGF, which is thus

exp(µ1[t1 + t2ρ
σ2

σ1
] + 1

2
σ2
1[. . .]

2). Combining the two terms and simplifying:
Fact 9. The joint MGF and joint CF of X, Y are

MX,Y (t1, t2) = M(t1, t2) = exp(µ1t1 + µ2t2 +
1

2
[σ2

1t
2
1 + 2ρσ1σ2t1t2 + σ2

2t
2
2]),

ϕX,Y (t1, t2) = ϕ(t1, t2) = exp(iµ1t1 + iµ2t2 −
1

2
[σ2

1t
2
1 + 2ρσ1σ2t1t2 + σ2t

2
2]).

Fact 10. X, Y are independent if and only if ρ = 0.
Proof. For densities: X, Y are independent iff the joint density fX,Y (x, y)
factorises as the product of the marginal densities fX(x).fY (y). For MGFs:
X, Y are independent iff the joint MGF MX,Y (t1, t2) factorises as the product
of the marginal MGFs MX(t1).MY (t2). From Fact 9, this occurs iff ρ = 0.
Similarly with CFs, if we prefer to work with them.
Note. X, Y independent implies X, Y uncorrelated (ρ = 0) in general (when
the correlation exists). The converse if false in general, but true, by Fact 10,
in the bivariate normal case.

3. THE MULTIVARIATE NORMAL DISTRIBUTION.
With one regressor, we used the bivariate normal distribution as above.

Similarly for two regressors, we use the trivariate normal. With any number
of regressors, as here, we need a general multivariate normal - or ‘multinor-
mal’ - distribution in n dimensions. We must expect that in n dimensions,
to handle a random n-vector X = (X1, · · · , Xn)

T , we will need
(i) a mean vector µ = (µ1, · · · , µn)

T with µi = EXi, µ = EX,
(ii) a covariance matrix Σ = (σij), with σij = cov(Xi, Xj): Σ = covX.

First, note how mean vectors and covariance matrices transform under
linear changes of variable:

PROPOSITION 1. If Y = AX + b, with Y,b m-vectors, A an
m× n matrix and X an n-vector,
(i) the mean vectors are related by EY = AEX+ b = Aµ+ b,
(ii) the covariance matrices are related by ΣY = AΣAT .
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