smfl3.tex Lecture 3. 21.1.2011

Proof. (i) This is just linearity of the expectation operator $E: Y_i = \sum_j a_{ij} X_j + b_i$, so

$$EY_i = \sum_j a_{ij} EX_j + b_i = \sum_j a_{ij} \mu_j + b_i,$$

for each *i*. In vector notation, this is $\mu_{\mathbf{Y}} = \mathbf{A}\mu + \mathbf{b}$. (ii) $Y_i - EY_i = \sum_k a_{ik}(X_k - EX_k) = \sum_k a_{ik}(X_k - \mu_k)$, so

$$cov(Y_i, Y_j) = E[\sum_r a_{ir}(X_r - \mu_r) \sum_s a_{js}(X_s - \mu_s)] = \sum_{rs} a_{ir}a_{js}E[(X_r - \mu_r)(X_s - \mu_s)]$$
$$= \sum_{rs} a_{ir}a_{js}\sigma_{rs} = \sum_{rs} \mathbf{A}_{ir} \mathbf{\Sigma}_{rs}(\mathbf{A}^T)_{sj} = (\mathbf{A}\mathbf{\Sigma}\mathbf{A}^T)_{ij},$$

identifying the elements of the matrix product $\mathbf{A} \Sigma \mathbf{A}^{T}$. //

COROLLARY. Covariance matrices Σ are non-negative definite.

Proof. Let **a** be any $n \times 1$ matrix (row-vector of length n); then $Y := \mathbf{a}\mathbf{X}$ is a scalar. So $Y = Y^T = \mathbf{X}\mathbf{a}^T$. Taking $\mathbf{a} = \mathbf{A}^T$, $\mathbf{b} = \mathbf{0}$ above, Y has variance $[= 1 \times 1$ covariance matrix] $\mathbf{a}^T \mathbf{\Sigma} \mathbf{a}$. But variances are non-negative. So $\mathbf{a}^T \mathbf{\Sigma} \mathbf{a} \ge \mathbf{0}$ for all n-vectors **a**. This says that $\mathbf{\Sigma}$ is non-negative definite. //

We turn now to a technical result, which is important in reducing n-dimensional problems to one-dimensional ones.

THEOREM (Cramér-Wold device). The distribution of a random *n*-vector **X** is completely determined by the set of all one-dimensional distributions of linear combinations $\mathbf{t}^T \mathbf{X} = \sum_i t_i X_i$, where **t** ranges over all fixed *n*-vectors.

Proof. When the MGF exists (as here), $Y := \mathbf{t}^T \mathbf{X}$ has MGF

$$M_Y(s) := E \exp\{sY\} = E \exp\{s\mathbf{t}^T \mathbf{X}\}$$

If we know the distribution of each Y, we know its MGF $M_Y(s)$. In particular, taking s = 1, we know $E \exp{\{\mathbf{t}^T \mathbf{X}\}}$. But this is the MGF of $\mathbf{X} = (X_1, \dots, X_n)^T$ evaluated at $\mathbf{t} = (t_1, \dots, t_n)^T$. But this determines the distribution of \mathbf{X} . When MGFs do not exist, replace t by it $(i = \sqrt{-1})$ and use characteristic functions (CFs) instead. //

Thus by the Cramér-Wold device, to define an *n*-dimensional distribution it suffices to define the distributions of *all linear combinations*.

The Cramér-Wold device suggests a way to *define* the multivariate normal distribution. The definition below seems indirect, but it has the advantage of handling the full-rank and singular cases together ($\rho = \pm 1$ as well as $-1 < \rho < 1$ for the bivariate case).

Definition. An *n*-vector **X** has an *n*-variate normal distribution iff $\mathbf{a}^T \mathbf{X}$ has a univariate normal distribution for all constant *n*-vectors **a**.

First, some properties resulting from the definition.

PROPOSITION. (i) Any linear transformation of a multinormal *n*-vector is multinormal,

(ii) Any vector of elements from a multinormal n-vector is multinormal. In particular, the components are univariate normal.

Proof. (i) If $\mathbf{y} = \mathbf{A}\mathbf{X} + \mathbf{c}$ (**A** an $m \times n$ matrix, **c** an *m*-vector) is an *m*-vector, and **b** is any *m*-vector,

$$\mathbf{b}^T \mathbf{Y} = \mathbf{b}^T (\mathbf{A}\mathbf{X} + \mathbf{c}) = (\mathbf{b}^T \mathbf{A})\mathbf{X} + \mathbf{b}^T \mathbf{c}.$$

If $\mathbf{a} = \mathbf{A}^T \mathbf{b}$ (an *m*-vector), $\mathbf{a}^T \mathbf{X} = \mathbf{b}^T \mathbf{A} \mathbf{X}$ is univariate normal as \mathbf{X} is multinormal. Adding the constant $\mathbf{b}^T \mathbf{c}$, $\mathbf{b}^T \mathbf{Y}$ is univariate normal. This holds for all \mathbf{b} , so \mathbf{Y} is *m*-variate normal.

(ii) Take a suitable matrix \mathbf{A} of 1s and 0s to pick out the required sub-vector. //

THEOREM 1. If **X** is *n*-variate normal with mean μ and covariance matrix Σ , its MGF is

$$M(\mathbf{t}) := E \exp\{\mathbf{t}^T \mathbf{X}\} = \exp\{\mathbf{t}^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t}\}.$$

Proof. By Proposition 1, $Y := \mathbf{t}^T \mathbf{X}$ has mean $\mathbf{t}^T \boldsymbol{\mu}$ and variance $\mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t}$. By definition of multinormality, $Y = \mathbf{t}^T \mathbf{X}$ is univariate normal. So Y is $N(\mathbf{t}^T \boldsymbol{\mu}, \mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t})$. So Y has MGF

$$M_Y(s) := E \exp\{sY\} = \exp\{s\mathbf{t}^T \mu + \frac{1}{2}s^2\mathbf{t}^T \boldsymbol{\Sigma}\mathbf{t}\}.$$

But $E(e^{sY}) = E \exp\{s\mathbf{t}^T\mathbf{X}\}\)$, so taking s = 1 (as in the proof of the Cramér-Wold device),

$$E\exp\{\mathbf{t}^{T}\mathbf{X}\}=\exp\{\mathbf{t}^{T}\boldsymbol{\mu}+\frac{1}{2}\mathbf{t}^{T}\boldsymbol{\Sigma}\mathbf{t}\},\$$

giving the MGF of \mathbf{X} as required. //

COROLLARY. The components of **X** are independent iff Σ is diagonal.

Proof. The components are independent iff the joint MGF factors into the product of the marginal MGFs. This factorization takes place, into $\Pi_i \exp\{\mu_i t_i + \frac{1}{2}\sigma_{ii}t_i^2\}$, in the diagonal case only. //

Recall that a covariance matrix Σ is always

- (a) symmetric $(\sigma_{ij} = \sigma_{ji}, \text{ as } \sigma_{ij} = cov(X_i, X_j)),$
- (b) non-negative definite: $\mathbf{a}^T \Sigma \mathbf{a} \ge 0$ for all *n*-vectors \mathbf{a} . Suppose that Σ is, further, *positive definite*:

$$\mathbf{a}^T \boldsymbol{\Sigma} \mathbf{a} > 0$$
 unless $\mathbf{a} = \mathbf{0}$.

[We write $\Sigma > 0$ for ' Σ is positive definite', $\Sigma \ge 0$ for ' Σ is non-negative definite'.]

Recall from Linear Algebra (or see III.1 below) that λ is an *eigenvalue* of a matrix **A** with *eigenvector* $\mathbf{x} \ (\neq \mathbf{0})$ if

$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$

(**x** is normalized if $\mathbf{x}^T \mathbf{x} = \sum_i x_i^2 = 1$, as is always possible), and

(i) a symmetric matrix has all its eigenvalues real,

(ii) a non-negative definite matrix has all its eigenvalues non-negative,

(iii) a positive definite matrix is non-singular (has an inverse), and has all its eigenvalues positive.

We quote (III.1, L12 below):

THEOREM (Spectral Decomposition, or Jordan Decomposition). If A is a symmetric matrix, A can be written

$$\mathbf{A} = \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Gamma}^T,$$

where Λ is a diagonal matrix of eigenvalues of \mathbf{A} , Γ is an orthogonal matrix whose columns are normalized eigenvectors.

COROLLARY. (i) For Σ a covariance matrix, we can define its square root matrix $\Sigma^{\frac{1}{2}}$ by $\Sigma^{\frac{1}{2}} := \Gamma \Lambda^{\frac{1}{2}} \Gamma^{T}$, $\Lambda^{\frac{1}{2}} := diag(\lambda_{i}^{\frac{1}{2}})$, with $\Sigma^{\frac{1}{2}} \Sigma^{\frac{1}{2}} = \Sigma$.

(ii) For Σ a non-singular (i.e. positive definite) covariance matrix, we can define its *inverse square root* matrix $\Sigma^{-\frac{1}{2}}$ by

$$\boldsymbol{\Sigma}^{-\frac{1}{2}} := \boldsymbol{\Gamma} \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Gamma}^{T}, \qquad \boldsymbol{\Lambda}^{-\frac{1}{2}} := diag(\lambda^{-\frac{1}{2}}), \qquad \text{with} \qquad \boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Lambda}^{-\frac{1}{2}} = \boldsymbol{\Lambda}^{-1}.$$

THEOREM. If X_i are independent (univariate) normal, any linear combination of the X_i is normal. That is, $\mathbf{X} = (X_1, \dots, X_n)^T$, with X_i independent normal, is multinormal.

Proof. If X_i are independent $N(\mu_i, \sigma_i^2)$ $(i = 1, \dots, n), Y := \sum_i a_i X_i + c$ is a linear combination, Y has MGF

$$M_{Y}(t) := E \exp\{t(c + \sum_{i} a_{i}X_{i})\}$$

$$= e^{tc}E\Pi \exp\{ta_{i}X_{i}\} \quad (\text{property of exponentials})$$

$$= e^{tc}\Pi E \exp\{ta_{i}X_{i}\} \quad (\text{independence})$$

$$= e^{tc}\Pi \exp\{\mu_{i}(a_{i}t) + \frac{1}{2}\sigma_{i}^{2}(a_{i}t)^{2}\} \quad (\text{normal MGF})$$

$$= \exp\{[c + \sum_{i} a_{i}\mu_{i}]t + \frac{1}{2}[\sum_{i} a_{i}^{2}\sigma_{i}^{2}]t^{2}\},$$

so Y is $N(c + \sum_i a_i \mu_i, \sum_i a_i^2 \sigma_i^2)$, from its MGF. //

THE MULTINORMAL DENSITY.

If **X** is *n*-variate normal, $N(\mu, \Sigma)$, its density (in *n* dimensions) need not exist (e.g. the singular case $\rho = \pm 1$ with n = 2). But if $\Sigma > 0$ (so Σ^{-1} exists), **X** has a density. The link between the multinormal density below and the multinormal MGF above is due to the English statistician F. Y. Edgeworth (1845-1926) in 1893.

THEOREM (Edgeworth). If μ is an *n*-vector, $\Sigma > \mathbf{0}$ a symmetric positive definite $n \times n$ matrix, then (i) $f(\mathbf{x}) := \frac{1}{(2\pi)^{\frac{1}{2}n} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\{-\frac{1}{2}(\mathbf{x}-\mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)\}$ is an *n*-dimensional probability density function (of a random *n*-vector \mathbf{X} , say), (ii) \mathbf{X} has MGF $M(\mathbf{t}) = \exp\{\mathbf{t}^T \mu + \frac{1}{2} \mathbf{t}^T \mathbf{\Sigma} \mathbf{t}\},$ (iii) \mathbf{X} is multinormal $N(\mu, \mathbf{\Sigma}).$