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Proof. (i) This is just linearity of the expectation operator E: Yi =
∑

jaijXj+
bi, so

EYi =
∑

j
aijEXj + bi =

∑
j
aijµj + bi,

for each i. In vector notation, this is µY = Aµ+ b.
(ii) Yi − EYi =

∑
kaik(Xk − EXk) =

∑
kaik(Xk − µk), so

cov(Yi, Yj) = E[
∑

r
air(Xr−µr)

∑
s
ajs(Xs−µs)] =

∑
rs
airajsE[(Xr−µr)(Xs−µs)]

=
∑

rs
airajsσrs =

∑
rs
AirΣrs(A

T )sj = (AΣAT )ij,

identifying the elements of the matrix product AΣAT . //

COROLLARY. Covariance matrices Σ are non-negative definite.

Proof. Let a be any n × 1 matrix (row-vector of length n); then Y := aX
is a scalar. So Y = Y T = XaT . Taking a = AT ,b = 0 above, Y has
variance [= 1× 1 covariance matrix] aTΣa. But variances are non-negative.
So aTΣa ≥ 0 for all n-vectors a. This says thatΣ is non-negative definite. //

We turn now to a technical result, which is important in reducing n-
dimensional problems to one-dimensional ones.

THEOREM (Cramér-Wold device). The distribution of a random n-
vector X is completely determined by the set of all one-dimensional distri-
butions of linear combinations tTX =

∑
itiXi, where t ranges over all fixed

n-vectors.

Proof. When the MGF exists (as here), Y := tTX has MGF

MY (s) := E exp{sY } = E exp{stTX}.

If we know the distribution of each Y , we know its MGF MY (s). In par-
ticular, taking s = 1, we know E exp{tTX}. But this is the MGF of
X = (X1, · · · , Xn)

T evaluated at t = (t1, · · · , tn)T . But this determines the
distribution of X.
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When MGFs do not exist, replace t by it (i =
√
−1) and use characteristic

functions (CFs) instead. //

Thus by the Cramér-Wold device, to define an n-dimensional distribution
it suffices to define the distributions of all linear combinations.

The Cramér-Wold device suggests a way to define the multivariate normal
distribution. The definition below seems indirect, but it has the advantage
of handling the full-rank and singular cases together (ρ = ±1 as well as
−1 < ρ < 1 for the bivariate case).

Definition. An n-vector X has an n-variate normal distribution iff aTX has
a univariate normal distribution for all constant n-vectors a.

First, some properties resulting from the definition.
PROPOSITION. (i) Any linear transformation of a multinormal n-vector
is multinormal,
(ii) Any vector of elements from a multinormal n-vector is multinormal. In
particular, the components are univariate normal.

Proof. (i) If y = AX+c (A an m×n matrix, c an m-vector) is an m-vector,
and b is any m-vector,

bTY = bT (AX+ c) = (bTA)X+ bTc.

If a = ATb (an m-vector), aTX = bTAX is univariate normal as X is multi-
normal. Adding the constant bTc, bTY is univariate normal. This holds for
all b, so Y is m-variate normal.
(ii) Take a suitable matrix A of 1s and 0s to pick out the required sub-vector.
//

THEOREM 1. If X is n-variate normal with mean µ and covariance matrix
Σ, its MGF is

M(t) := E exp{tTX} = exp{tTµ+
1

2
tTΣt}.

Proof. By Proposition 1, Y := tTX has mean tTµ and variance tTΣt.
By definition of multinormality, Y = tTX is univariate normal. So Y is
N(tTµ, tTΣt). So Y has MGF

MY (s) := E exp{sY } = exp{stTµ+
1

2
s2tTΣt}.
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But E(esY ) = E exp{stTX}, so taking s = 1 (as in the proof of the Cramér-
Wold device),

E exp{tTX} = exp{tTµ+
1

2
tTΣt},

giving the MGF of X as required. //

COROLLARY. The components of X are independent iff Σ is diagonal.

Proof. The components are independent iff the joint MGF factors into
the product of the marginal MGFs. This factorization takes place, into
Πi exp{µiti +

1
2
σiit

2
i }, in the diagonal case only. //

Recall that a covariance matrix Σ is always
(a) symmetric (σij = σji, as σij = cov(Xi, Xj)),
(b) non-negative definite: aTΣa ≥ 0 for all n-vectors a.

Suppose that Σ is, further, positive definite:

aTΣa > 0 unless a = 0.

[We write Σ > 0 for ‘Σ is positive definite’, Σ ≥ 0 for ‘Σ is non-negative
definite’.]

Recall from Linear Algebra (or see III.1 below) that λ is an eigenvalue of
a matrix A with eigenvector x (̸= 0) if

Ax = λx

(x is normalized if xTx = Σix
2
i = 1, as is always possible), and

(i) a symmetric matrix has all its eigenvalues real,
(ii) a non-negative definite matrix has all its eigenvalues non-negative,
(iii) a positive definite matrix is non-singular (has an inverse), and has all its
eigenvalues positive.

We quote (III.1, L12 below):

THEOREM (Spectral Decomposition, or Jordan Decomposition).
If A is a symmetric matrix, A can be written

A = ΓΛΓT ,

where Λ is a diagonal matrix of eigenvalues of A, Γ is an orthogonal matrix
whose columns are normalized eigenvectors.

3



COROLLARY. (i) For Σ a covariance matrix, we can define its square root

matrix Σ
1
2 by Σ

1
2 := ΓΛ

1
2ΓT , Λ

1
2 := diag(λ

1
2
i ), with Σ

1
2Σ

1
2 = Σ.

(ii) For Σ a non-singular (i.e. positive definite) covariance matrix, we can

define its inverse square root matrix Σ− 1
2 by

Σ− 1
2 := ΓΛ− 1

2ΓT , Λ− 1
2 := diag(λ− 1

2 ), with Λ− 1
2Λ− 1

2 = Λ−1.

THEOREM. If Xi are independent (univariate) normal, any linear combi-
nation of theXi is normal. That is, X = (X1, · · · , Xn)

T , with Xi independent
normal, is multinormal.

Proof. If Xi are independent N(µi, σ
2
i ) (i = 1, · · · , n), Y :=

∑
iaiXi + c

is a linear combination, Y has MGF

MY (t) := E exp{t(c+
∑

i
aiXi)}

= etcEΠexp{taiXi} (property of exponentials)

= etcΠE exp{taiXi} (independence)

= etcΠexp{µi(ait) +
1

2
σ2
i (ait)

2} (normal MGF)

= exp{[c+
∑

i
aiµi]t+

1

2
[
∑

i
a2iσ

2
i ]t

2},

so Y is N(c+
∑

iaiµi,
∑

ia
2
iσ

2
i ), from its MGF. //

THE MULTINORMAL DENSITY.
If X is n-variate normal, N(µ,Σ), its density (in n dimensions) need not

exist (e.g. the singular case ρ = ±1 with n = 2). But if Σ > 0 (so Σ−1

exists), X has a density. The link between the multinormal density below
and the multinormal MGF above is due to the English statistician F. Y.
Edgeworth (1845-1926) in 1893.

THEOREM (Edgeworth). If µ is an n-vector, Σ > 0 a symmetric positive
definite n× n matrix, then
(i) f(x) := 1

(2π)
1
2n|Σ|

1
2
exp{−1

2
(x− µ)TΣ−1(x− µ)} is an n-dimensional prob-

ability density function (of a random n-vector X, say),
(ii) X has MGF M(t) = exp{tTµ+ 1

2
tTΣt},

(iii) X is multinormal N(µ,Σ).
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