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Proof. (i) This is just linearity of the expectation operator £: Y; = 3= ;a:; X;+
b;, so
EY; =% 0 EX;+bi=)_ aijp; +b;
for each 7. In vector notation, this is uy = A+ b.
(i) Y; = BY; = Ypaw(Xp — EXy) = Zpai( Xy — k), so

COU(Y;,Y}) = E[Zrair(Xr_,ur)Z a]s X yfs Z azrafjs Xr_,ur)(Xs_,us)]

= Zmai'rajso-rs - ZTSAWETS(AT)S]‘ - (AEAT)UJ
identifying the elements of the matrix product AXAT. //

COROLLARY. Covariance matrices 3 are non-negative definite.

Proof. Let a be any n x 1 matrix (row-vector of length n); then Y := aX
is a scalar. So Y = YT = Xa’. Taking a= A’ b = 0 above, Y has
variance [= 1 x 1 covariance matrix] a’ ¥a. But variances are non-negative.
So a’Xa > 0 for all n-vectors a. This says that ¥ is non-negative definite. //

We turn now to a technical result, which is important in reducing n-
dimensional problems to one-dimensional ones.

THEOREM (Cramér-Wold device). The distribution of a random n-
vector X is completely determined by the set of all one-dimensional distri-
butions of linear combinations t7X = 3., X;, where t ranges over all fixed
n-vectors.

Proof. When the MGF exists (as here), Y := t"X has MGF
My (s) := Eexp{sY} = Eexp{st’X}.

If we know the distribution of each Y, we know its MGF My (s). In par-
ticular, taking s = 1, we know Eexp{t’X}. But this is the MGF of
X = (Xy, -+, X,)T evaluated at t = (¢1,---,t,)7. But this determines the
distribution of X.



When MGFs do not exist, replace t by it (i = v/—1) and use characteristic
functions (CFs) instead. //

Thus by the Cramér-Wold device, to define an n-dimensional distribution
it suffices to define the distributions of all linear combinations.

The Cramér-Wold device suggests a way to define the multivariate normal
distribution. The definition below seems indirect, but it has the advantage
of handling the full-rank and singular cases together (p = +1 as well as
—1 < p < 1 for the bivariate case).

Definition. An n-vector X has an n-variate normal distribution iff a’ X has
a univariate normal distribution for all constant n-vectors a.

First, some properties resulting from the definition.
PROPOSITION. (i) Any linear transformation of a multinormal n-vector
is multinormal,
(ii) Any vector of elements from a multinormal n-vector is multinormal. In
particular, the components are univariate normal.

Proof. (i) If y = AX+c (A an m X n matrix, ¢ an m-vector) is an m-vector,
and b is any m-vector,

b’Y = b"(AX +¢) = (b"A)X + b’c.

If a = ATb (an m-vector), a’ X = b AX is univariate normal as X is multi-
normal. Adding the constant b”c, b”Y is univariate normal. This holds for
all b, so Y is m-variate normal.

(i) Take a suitable matrix A of 1s and 0s to pick out the required sub-vector.

//

THEOREM 1. If X is n-variate normal with mean p and covariance matrix
3, its MGF is

1
M(t) := Eexp{t'X} = exp{tTp + itTEt}.

Proof. By Proposition 1, Y := t7X has mean t7x and variance t?Xt.
By definition of multinormality, ¥ = t7X is univariate normal. So Y is
N(tTp, t73t). So Y has MGF

1
My (s) := Eexp{sY} = exp{st’ p + §SZtTZt}.



But E(e®Y) = Eexp{st?X}, so taking s = 1 (as in the proof of the Cramér-
Wold device),

1
Eexp{t'X} = exp{t’p + §tTEt},
giving the MGF of X as required. //

COROLLARY. The components of X are independent iff ¥ is diagonal.

Proof. The components are independent iff the joint MGF factors into
the product of the marginal MGFs. This factorization takes place, into
I1; exp{ pit; + %Oiit?}, in the diagonal case only. //

Recall that a covariance matrix ¥ is always

(a) symmetric (0;; = i, as 0;; = cov(X;, X)),

(b) non-negative definite: a’Xa > 0 for all n-vectors a.
Suppose that X is, further, positive definite:

a’Ya>0 unless a=0.

[We write 3 > 0 for ‘X is positive definite’, ¥ > 0 for ‘3 is non-negative
definite’ ]

Recall from Linear Algebra (or see I11.1 below) that A is an eigenvalue of
a matrix A with eigenvector x (# 0) if

Ax = \x

(x is normalized if xTx = ;22 = 1, as is always possible), and

(i) a symmetric matrix has all its eigenvalues real,

(ii) a non-negative definite matrix has all its eigenvalues non-negative,

(iii) a positive definite matrix is non-singular (has an inverse), and has all its

eigenvalues positive.
We quote (IIL.1, L12 below):

THEOREM (Spectral Decomposition, or Jordan Decomposition).
If A is a symmetric matrix, A can be written

A =TATIT,

where A is a diagonal matrix of eigenvalues of A, I' is an orthogonal matrix
whose columns are normalized eigenvectors.



COROLLARY. (i) For X a covariance matrix, we can define its square root
1

matrix £2 by 22 := TA2T7, Az := diag()\?), with £2X2 = .

(ii) For ¥ a non-singular (i.e. positive definite) covariance matrix, we can

define its inverse square root matrix >3 by

=TA =TT,  A"2:=diag(\"2), with A 2A2z2=A""
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THEOREM. If X; are independent (univariate) normal, any linear combi-
nation of the X; is normal. That is, X = (X1, -+, X,,)?, with X; independent
normal, is multinormal.

Proof. Tf X; are independent N (ju;,c?) (t=1,---,n), Y =0, X; +¢
is a linear combination, ¥ has MGF

My(t) = Eexp{t(c+_ a;X;)}
= e“Ellexp{ta; X;} (property of exponentials)
e"“IIE exp{ta;X;}  (independence)

1
= e"Mlexp{u;(ait) + iaf(ait)Q} (normal MGF)

1
= exp{lc+ D apult + 5[2#?‘7@2]752}7
so Y is N(c+ Saipi, > a20?), from its MGF. //

THE MULTINORMAL DENSITY.

If X is n-variate normal, N(u, X)), its density (in n dimensions) need not
exist (e.g. the singular case p = +1 with n = 2). But if ¥ > 0 (so X!
exists), X has a density. The link between the multinormal density below
and the multinormal MGF above is due to the English statistician F. Y.
Edgeworth (1845-1926) in 1893.

THEOREM (Edgeworth). If 4 is an n-vector, 3 > 0 a symmetric positive
definite n x n matrix, then

(i) f(x):= m exp{—3(x — p)"E"!(x — p)} is an n-dimensional prob-
ability density function (of a random n-vector X, say),

(i) X has MGF M (t) = exp{t’n + :t"Xt},

(iii) X is multinormal N (p, 3).



