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Proof. Write Y := Σ− 1
2X (Σ− 1

2 exists as Σ > 0, by above). Then Y has

covariance matrix Σ− 1
2Σ(Σ− 1

2 )T . Since Σ = ΣT and Σ = Σ
1
2Σ

1
2 , Y has

covariance matrix I (the components Yi of Y are uncorrelated).

Change variables as above, with y = Σ− 1
2x, x = Σ

1
2y. The Jacobian

is (taking A = Σ− 1
2 ) J = ∂x/∂y = det(Σ

1
2 ),= (detΣ)

1
2 by the product

theorem for determinants. Substituting, the integrand is

exp{−1

2
(x−µ)TΣ−1(x−µ)} = exp{−1

2
(Σ

1
2y−Σ

1
2 (Σ− 1

2µ))Tσ−1(σ
1
2y−σ

1
2 (σ− 1

2µ))}.

Writing ν := σ− 1
2µ, this is

exp{−1

2
(y − ν)Tσ

1
2σ−1σ

1
2 (y − ν)} = exp{−1

2
(y − ν)T (y − ν)}.

So by the change of density formula, Y has density

g(y) =
1

(2π)
1
2
n|σ|

1
2

.|σ|
1
2 . exp{−1

2
(y − ν)T (y − ν)}.

This factorises as

Πn
i=1

1

(2π)
1
2

exp{−1

2
(yi − νi)

2}.

So the components Yi of Y are independent N(νi, 1). So Y is multinormal,
N(ν, I).
(i) Taking A = B = Rn,

∫
Rn f(x)dx =

∫
Rn g(y)dy,= 1 as g is a probability

density, as above. So f is also a probability density (non-negative and inte-
grates to 1).

(ii) X = σ
1
2Y is a linear transformation of Y, and Y is multivariate normal,

N(ν, I). So X is multivariate normal.

(iii) EX = σ
1
2EY = σ

1
2ν = σ

1
2 .σ− 1

2µ = µ, covX = σ
1
2 covY(σ

1
2 )T = σ

1
2 Iσ

1
2 =

σ. So X is multinormal N(µ, σ). So its MGF is

M(t) = exp{tTµ+
1

2
tTσt}. //

Independence of Linear Forms
Given a normally distributed random vector x ∼ N(µ,Σ) and a matrix
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A, one may form the linear form Ax. One often encounters several of these
together, and needs their joint distribution – in particular, to know when
these are independent.

THEOREM 3. Linear forms Ax and Bx with x ∼ N(µ,Σ) are independent
iff

AΣBT = 0.

In particular, if A, B are symmetric and Σ = σ2I, they are independent iff

AB = 0.

Proof. The joint MGF is

M(u,v) := E exp{uTAx+ ivTBx} = E exp{(ATu+BTv)Tx}.

This is the MGF of x at argument t = ATu+BTv, so

M(u,v) = exp{(uTA+vTB)µ+
1

2
[uTAΣATu+uTAΣBTv+vTBΣATu+vTBΣBTuv]}.

This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AΣBT = 0 and BΣAT = 0; by
symmetry of Σ, the two are equivalent.

4. ESTIMATION THEORY FOR THE MULTIVARIATE NOR-
MALl.

Given a sample x1, . . . , xn from the multivariate normal Np(µ,Σ), form
the sample mean (vector)

x̄ :=
1

n

n∑
i=1

xi,

as in the one-dimensional case, and the sample covariance matrix

S :=
1

n

n∑
i=1

(xi − x̄)T (xi − x̄).

The likelihood for a sample of size 1 is

L(x|µ,Σ) = (2π)−p/2|Σ|−1/2 exp{−1

2
(x− µ)TΣ−1(x− µ)},
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so the likelihood for a sample of size n is

L = (2π)−np/2|Σ|−n/2 exp{−1

2

n∑
1

(xi − µ)TΣ−1(xi − µ)}.

Writing
xi − µ = (xi − x̄)− (µ− x̄),

n∑
1

(xi − µ)TΣ−1(xi − µ) =
n∑
1

(xi − x̄)TΣ−1(xi − x̄) + n(x̄− µ)TΣ−1(x̄− µ)

(the cross-terms cancel as
∑
(xi − x̄) = 0). The summand in the first term

on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)
and trace(A+B) = trace(B + A),

trace(
n∑
1

(xi − x̄)TΣ−1(xi − x̄)) = trace(Σ−1
n∑
1

(xi − x̄)T (xi − x̄))

= trace(Σ−1.nS) = n trace(Σ−1S).

Combining,

L = (2π)−np/2|Σ|−n/2 exp{−1

2
n trace(Σ−1S)− 1

n
n(x̄− µ)TΣ−1(x̄− µ)}.

This involves the data only through x̄ and S. We expect the sample mean
x̄ to be informative about the population mean µ and the sample covariance
matrix S to be informative about the population covariance matrix S. In
fact x̄, S are fully informative about µ, Σ, in a sense that can be made precise
using the theory of sufficient statistics (for which we must refer to a good
book on statistical inference – see e.g. Casella and Berger [CB], Ch. 6, or
III.5 below). These natural estimators are in fact the maximum likelihood
estimators (Introductory Lectures in Statistics):

Theorem. For the multivariate normal Np(µ,Σ), x̄ and S are the maximum
likelihood estimators for µ, Σ.

Proof. Write V = (vij) := Σ−1. By above, the likelihood is

L = const.|V |n/2 exp{−1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ)},
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so the log-likelihood is

ℓ = c+
1

2
n log |V | − 1

2
n trace(V S)− 1

2
n(x̄− µ)TV (x̄− µ).

The MLE µ̂ for µ is x̄, as this reduces the last term (the only one involving
µ) to its minimum value, 0. For a square matrix A = (aij), its determinant
is

|A| =
∑
j

aijAij

for each i, or
|A| =

∑
j

aijAij

for each j, expanding by the ith row or jth column, where Aij is the cofactor
(signed minor) of aij. From either,

∂|A|/∂aij = Aij,

so
∂ log |A|/∂aij = Aij/|A| = (A−1)ji,

the (j, i) element of A−1, recalling the formula for the matrix inverse (or
(A−1)ij if A is symmetric). Also, if B is symmetric,

trace(AB) =
∑
i

∑
j

aijbji =
∑
i,j

aijbij,

so
∂trace(AB)/∂aij = bij.

Using these, and writing S = (sij),

∂ log |V |/∂vij = (V −1)ij = (Σ)ij = σij (V := Σ−1),

∂trace(V S)/∂vij = sij.

So

∂ℓ/∂vij =
1

2
n(σij − sij),

which is 0 for all i and j iff Σ = S. This says that S is the MLE for Σ, as
required. //
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