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Proof. Write Y := £72X (X2 exists as 3 > 0, by above). Then Y has
covariance matrix £ 23(272)7. Since £ = X7 and ¥ = ¥2¥2, Y has
covariance matrix I (the components Y; of Y are uncorrelated).

Change variables as above, with y = E_%X, X = E%y. The Jacobian
is (taking A = ¥72) J = 9x/dy = det($2),= (detX)2 by the product
theorem for determinants. Substituting, the integrand is

exp{— 5 (x— ) S (x-)} = expl— 5 (Shy -S4 1) o (ody o (o L)),

Writing v := U_%,u, this is

expl~5y ~ v oto ot (y ~ v)} = e~y ~ 1)y ~ )}

So by the change of density formula, Y has density

1 1 1
9(y) = ——rlol* exp{—5(y =)' (y =)}
2m) o}
This factorises as | )
H?: eXpP1—=z\WY; — V; 2 .
Gy P )
So the components Y; of Y are independent N(v;,1). So Y is multinormal,

N(v, I).

(i) Taking A = B = R", g f(X)dx = [gn g(y)dy,= 1 as g is a probability
density, as above. So f is also a probability density (non-negative and inte-
grates to 1).

(i) X = o2 is a linear transformation of Y, and Y is multivariate normal,
N(v,I). So X is multivariate normal.

(ili) EX = 02 EY = 02v = 02.0 2 = i, covX = o2covY (02) = o210
0. So X is multinormal N(u, o). So its MGF is

N

M(t) = exp{tTp + ;tTcrt}. //

Independence of Linear Forms
Given a normally distributed random vector x ~ N(u, ) and a matrix

1



A, one may form the linear form Ax. One often encounters several of these
together, and needs their joint distribution — in particular, to know when
these are independent.

THEOREM 3. Linear forms Ax and Bx with x ~ N(u, ) are independent
iff
ALBT =0.

In particular, if A, B are symmetric and ¥ = o1, they are independent iff
AB = 0.
Proof. The joint MGF is
M(u,v) := Eexp{u’ Ax + iv! Bx} = Eexp{(ATu+ B'v)"x}.

This is the MGF of x at argument t = ATu + BTv, so
1
M(u,v) = exp{(uTA—i—VTB),u—i—§[uTAZATu+uTAEBTV—|—vTBEATu+VTBZBTuv]}.

This factorises into a product of a function of u and a function of v iff the
two cross-terms in u and v vanish, that is, iff AX BT = 0 and BXAT = 0; by
symmetry of 3, the two are equivalent.

4. ESTIMATION THEORY FOR THE MULTIVARIATE NOR-
MALL

Given a sample z1,...,z, from the multivariate normal N,(yx, ), form
the sample mean (vector)

1 n
T = —in,
iz

as in the one-dimensional case, and the sample covariance matrix
S =
The likelihood for a sample of size 1 is

Llalp, D) = () P2S| 2 exp{— (x — )" S~ (@ — )},



so the likelihood for a sample of size n is

n

L= @m) S|  exp{— ) S - S - )

Writing
v = (i 7) (i %),
> (@i = )" @i = p) = D (i = )T = 2) + (@ - )T - p)
1 1
(the cross-terms cancel as Y (z; — ) = 0). The summand in the first term
on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA)

and trace(A + B) = trace(B + A),

n n

trace(d (z; — 2)"S N a; — 7)) = trace(S™ (x; — 7)) (2; — 7))

1 1
= trace(X'.nS) = n trace(19).

Combining,

L = (2m)"/2|5) /2 exp{—;n trace(s1S) — in(x C TS E - ),
This involves the data only through z and S. We expect the sample mean
Z to be informative about the population mean p and the sample covariance
matrix S to be informative about the population covariance matrix S. In
fact z, S are fully informative about i, X, in a sense that can be made precise
using the theory of sufficient statistics (for which we must refer to a good
book on statistical inference — see e.g. Casella and Berger [CB], Ch. 6, or
II1.5 below). These natural estimators are in fact the maximum likelihood
estimators (Introductory Lectures in Statistics):

Theorem. For the multivariate normal N,(x, ), z and S are the maximum
likelihood estimators for p, 3.

Proof. Write V' = (v;;) := 71, By above, the likelihood is

1 1
L = const.|V|"/? exp{—§n trace(VS) — §n(§7 —w)TV(z —p)},



so the log-likelihood is

{=c+ ;nlog V] — 1n trace(VS) — ;n( WV (z - p).

The MLE /i for p is &, as this reduces the last term (the only one involving
) to its minimum value, 0. For a square matrix A = (a;;), its determinant

is
|A| = Zaiinj
J

for each i, or

Al = ZaijAz-j
J

for each j, expanding by the 7th row or jth column, where A;; is the cofactor
(signed minor) of a;;. From either,

0|A|/8aij = Aija

SO

dlog |Al/0a;; = Ay /|Al = (A™1)i,

the (j,4) element of A™', recalling the formula for the matrix inverse (or
(A7h),; if A is symmetric). Also, if B is symmetric,

trace(AB) Z Z aijbji =Y a;by,
i,J
SO
otrace(AB)/0a;; = b;;.
Using these, and writing S = (s;5),
Glog |V‘/6’UU = (V71>ij = (2>’LJ = 045 (V = 271),
Otrace(V S)/0v; = sij.

So )
01/0u; = (o — i),

which is 0 for all ¢ and j iff ¥ = S. This says that S is the MLE for X, as
required. //



